Step |
Hyp |
Ref |
Expression |
1 |
|
ismbf2d.1 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ ) |
2 |
|
ismbf2d.2 |
⊢ ( 𝜑 → 𝐴 ∈ dom vol ) |
3 |
|
ismbf2d.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) ∈ dom vol ) |
4 |
|
ismbf2d.4 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ◡ 𝐹 “ ( -∞ (,) 𝑥 ) ) ∈ dom vol ) |
5 |
|
elxr |
⊢ ( 𝑥 ∈ ℝ* ↔ ( 𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞ ) ) |
6 |
|
oveq1 |
⊢ ( 𝑥 = +∞ → ( 𝑥 (,) +∞ ) = ( +∞ (,) +∞ ) ) |
7 |
|
iooid |
⊢ ( +∞ (,) +∞ ) = ∅ |
8 |
6 7
|
eqtrdi |
⊢ ( 𝑥 = +∞ → ( 𝑥 (,) +∞ ) = ∅ ) |
9 |
8
|
imaeq2d |
⊢ ( 𝑥 = +∞ → ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) = ( ◡ 𝐹 “ ∅ ) ) |
10 |
|
ima0 |
⊢ ( ◡ 𝐹 “ ∅ ) = ∅ |
11 |
|
0mbl |
⊢ ∅ ∈ dom vol |
12 |
10 11
|
eqeltri |
⊢ ( ◡ 𝐹 “ ∅ ) ∈ dom vol |
13 |
9 12
|
eqeltrdi |
⊢ ( 𝑥 = +∞ → ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) ∈ dom vol ) |
14 |
13
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 = +∞ ) → ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) ∈ dom vol ) |
15 |
|
fimacnv |
⊢ ( 𝐹 : 𝐴 ⟶ ℝ → ( ◡ 𝐹 “ ℝ ) = 𝐴 ) |
16 |
1 15
|
syl |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ℝ ) = 𝐴 ) |
17 |
16 2
|
eqeltrd |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ℝ ) ∈ dom vol ) |
18 |
|
oveq1 |
⊢ ( 𝑥 = -∞ → ( 𝑥 (,) +∞ ) = ( -∞ (,) +∞ ) ) |
19 |
|
ioomax |
⊢ ( -∞ (,) +∞ ) = ℝ |
20 |
18 19
|
eqtrdi |
⊢ ( 𝑥 = -∞ → ( 𝑥 (,) +∞ ) = ℝ ) |
21 |
20
|
imaeq2d |
⊢ ( 𝑥 = -∞ → ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) = ( ◡ 𝐹 “ ℝ ) ) |
22 |
21
|
eleq1d |
⊢ ( 𝑥 = -∞ → ( ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) ∈ dom vol ↔ ( ◡ 𝐹 “ ℝ ) ∈ dom vol ) ) |
23 |
17 22
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝑥 = -∞ → ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) ∈ dom vol ) ) |
24 |
23
|
imp |
⊢ ( ( 𝜑 ∧ 𝑥 = -∞ ) → ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) ∈ dom vol ) |
25 |
3 14 24
|
3jaodan |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞ ) ) → ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) ∈ dom vol ) |
26 |
5 25
|
sylan2b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ* ) → ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) ∈ dom vol ) |
27 |
|
oveq2 |
⊢ ( 𝑥 = +∞ → ( -∞ (,) 𝑥 ) = ( -∞ (,) +∞ ) ) |
28 |
27 19
|
eqtrdi |
⊢ ( 𝑥 = +∞ → ( -∞ (,) 𝑥 ) = ℝ ) |
29 |
28
|
imaeq2d |
⊢ ( 𝑥 = +∞ → ( ◡ 𝐹 “ ( -∞ (,) 𝑥 ) ) = ( ◡ 𝐹 “ ℝ ) ) |
30 |
29
|
eleq1d |
⊢ ( 𝑥 = +∞ → ( ( ◡ 𝐹 “ ( -∞ (,) 𝑥 ) ) ∈ dom vol ↔ ( ◡ 𝐹 “ ℝ ) ∈ dom vol ) ) |
31 |
17 30
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝑥 = +∞ → ( ◡ 𝐹 “ ( -∞ (,) 𝑥 ) ) ∈ dom vol ) ) |
32 |
31
|
imp |
⊢ ( ( 𝜑 ∧ 𝑥 = +∞ ) → ( ◡ 𝐹 “ ( -∞ (,) 𝑥 ) ) ∈ dom vol ) |
33 |
|
oveq2 |
⊢ ( 𝑥 = -∞ → ( -∞ (,) 𝑥 ) = ( -∞ (,) -∞ ) ) |
34 |
|
iooid |
⊢ ( -∞ (,) -∞ ) = ∅ |
35 |
33 34
|
eqtrdi |
⊢ ( 𝑥 = -∞ → ( -∞ (,) 𝑥 ) = ∅ ) |
36 |
35
|
imaeq2d |
⊢ ( 𝑥 = -∞ → ( ◡ 𝐹 “ ( -∞ (,) 𝑥 ) ) = ( ◡ 𝐹 “ ∅ ) ) |
37 |
36 12
|
eqeltrdi |
⊢ ( 𝑥 = -∞ → ( ◡ 𝐹 “ ( -∞ (,) 𝑥 ) ) ∈ dom vol ) |
38 |
37
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 = -∞ ) → ( ◡ 𝐹 “ ( -∞ (,) 𝑥 ) ) ∈ dom vol ) |
39 |
4 32 38
|
3jaodan |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞ ) ) → ( ◡ 𝐹 “ ( -∞ (,) 𝑥 ) ) ∈ dom vol ) |
40 |
5 39
|
sylan2b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ* ) → ( ◡ 𝐹 “ ( -∞ (,) 𝑥 ) ) ∈ dom vol ) |
41 |
1 26 40
|
ismbfd |
⊢ ( 𝜑 → 𝐹 ∈ MblFn ) |