| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ismbf2d.1 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ ) |
| 2 |
|
ismbf2d.2 |
⊢ ( 𝜑 → 𝐴 ∈ dom vol ) |
| 3 |
|
ismbf2d.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) ∈ dom vol ) |
| 4 |
|
ismbf2d.4 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ◡ 𝐹 “ ( -∞ (,) 𝑥 ) ) ∈ dom vol ) |
| 5 |
|
elxr |
⊢ ( 𝑥 ∈ ℝ* ↔ ( 𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞ ) ) |
| 6 |
|
oveq1 |
⊢ ( 𝑥 = +∞ → ( 𝑥 (,) +∞ ) = ( +∞ (,) +∞ ) ) |
| 7 |
|
iooid |
⊢ ( +∞ (,) +∞ ) = ∅ |
| 8 |
6 7
|
eqtrdi |
⊢ ( 𝑥 = +∞ → ( 𝑥 (,) +∞ ) = ∅ ) |
| 9 |
8
|
imaeq2d |
⊢ ( 𝑥 = +∞ → ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) = ( ◡ 𝐹 “ ∅ ) ) |
| 10 |
|
ima0 |
⊢ ( ◡ 𝐹 “ ∅ ) = ∅ |
| 11 |
|
0mbl |
⊢ ∅ ∈ dom vol |
| 12 |
10 11
|
eqeltri |
⊢ ( ◡ 𝐹 “ ∅ ) ∈ dom vol |
| 13 |
9 12
|
eqeltrdi |
⊢ ( 𝑥 = +∞ → ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) ∈ dom vol ) |
| 14 |
13
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 = +∞ ) → ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) ∈ dom vol ) |
| 15 |
|
fimacnv |
⊢ ( 𝐹 : 𝐴 ⟶ ℝ → ( ◡ 𝐹 “ ℝ ) = 𝐴 ) |
| 16 |
1 15
|
syl |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ℝ ) = 𝐴 ) |
| 17 |
16 2
|
eqeltrd |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ℝ ) ∈ dom vol ) |
| 18 |
|
oveq1 |
⊢ ( 𝑥 = -∞ → ( 𝑥 (,) +∞ ) = ( -∞ (,) +∞ ) ) |
| 19 |
|
ioomax |
⊢ ( -∞ (,) +∞ ) = ℝ |
| 20 |
18 19
|
eqtrdi |
⊢ ( 𝑥 = -∞ → ( 𝑥 (,) +∞ ) = ℝ ) |
| 21 |
20
|
imaeq2d |
⊢ ( 𝑥 = -∞ → ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) = ( ◡ 𝐹 “ ℝ ) ) |
| 22 |
21
|
eleq1d |
⊢ ( 𝑥 = -∞ → ( ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) ∈ dom vol ↔ ( ◡ 𝐹 “ ℝ ) ∈ dom vol ) ) |
| 23 |
17 22
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝑥 = -∞ → ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) ∈ dom vol ) ) |
| 24 |
23
|
imp |
⊢ ( ( 𝜑 ∧ 𝑥 = -∞ ) → ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) ∈ dom vol ) |
| 25 |
3 14 24
|
3jaodan |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞ ) ) → ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) ∈ dom vol ) |
| 26 |
5 25
|
sylan2b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ* ) → ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) ∈ dom vol ) |
| 27 |
|
oveq2 |
⊢ ( 𝑥 = +∞ → ( -∞ (,) 𝑥 ) = ( -∞ (,) +∞ ) ) |
| 28 |
27 19
|
eqtrdi |
⊢ ( 𝑥 = +∞ → ( -∞ (,) 𝑥 ) = ℝ ) |
| 29 |
28
|
imaeq2d |
⊢ ( 𝑥 = +∞ → ( ◡ 𝐹 “ ( -∞ (,) 𝑥 ) ) = ( ◡ 𝐹 “ ℝ ) ) |
| 30 |
29
|
eleq1d |
⊢ ( 𝑥 = +∞ → ( ( ◡ 𝐹 “ ( -∞ (,) 𝑥 ) ) ∈ dom vol ↔ ( ◡ 𝐹 “ ℝ ) ∈ dom vol ) ) |
| 31 |
17 30
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝑥 = +∞ → ( ◡ 𝐹 “ ( -∞ (,) 𝑥 ) ) ∈ dom vol ) ) |
| 32 |
31
|
imp |
⊢ ( ( 𝜑 ∧ 𝑥 = +∞ ) → ( ◡ 𝐹 “ ( -∞ (,) 𝑥 ) ) ∈ dom vol ) |
| 33 |
|
oveq2 |
⊢ ( 𝑥 = -∞ → ( -∞ (,) 𝑥 ) = ( -∞ (,) -∞ ) ) |
| 34 |
|
iooid |
⊢ ( -∞ (,) -∞ ) = ∅ |
| 35 |
33 34
|
eqtrdi |
⊢ ( 𝑥 = -∞ → ( -∞ (,) 𝑥 ) = ∅ ) |
| 36 |
35
|
imaeq2d |
⊢ ( 𝑥 = -∞ → ( ◡ 𝐹 “ ( -∞ (,) 𝑥 ) ) = ( ◡ 𝐹 “ ∅ ) ) |
| 37 |
36 12
|
eqeltrdi |
⊢ ( 𝑥 = -∞ → ( ◡ 𝐹 “ ( -∞ (,) 𝑥 ) ) ∈ dom vol ) |
| 38 |
37
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 = -∞ ) → ( ◡ 𝐹 “ ( -∞ (,) 𝑥 ) ) ∈ dom vol ) |
| 39 |
4 32 38
|
3jaodan |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞ ) ) → ( ◡ 𝐹 “ ( -∞ (,) 𝑥 ) ) ∈ dom vol ) |
| 40 |
5 39
|
sylan2b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ* ) → ( ◡ 𝐹 “ ( -∞ (,) 𝑥 ) ) ∈ dom vol ) |
| 41 |
1 26 40
|
ismbfd |
⊢ ( 𝜑 → 𝐹 ∈ MblFn ) |