Step |
Hyp |
Ref |
Expression |
1 |
|
ismbfcn2.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
2 |
1
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ ) |
3 |
|
ismbfcn |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ↔ ( ( ℜ ∘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ∈ MblFn ∧ ( ℑ ∘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ∈ MblFn ) ) ) |
4 |
2 3
|
syl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ↔ ( ( ℜ ∘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ∈ MblFn ∧ ( ℑ ∘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ∈ MblFn ) ) ) |
5 |
|
ref |
⊢ ℜ : ℂ ⟶ ℝ |
6 |
5
|
a1i |
⊢ ( 𝜑 → ℜ : ℂ ⟶ ℝ ) |
7 |
6 1
|
cofmpt |
⊢ ( 𝜑 → ( ℜ ∘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ) |
8 |
7
|
eleq1d |
⊢ ( 𝜑 → ( ( ℜ ∘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ∈ MblFn ↔ ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ∈ MblFn ) ) |
9 |
|
imf |
⊢ ℑ : ℂ ⟶ ℝ |
10 |
9
|
a1i |
⊢ ( 𝜑 → ℑ : ℂ ⟶ ℝ ) |
11 |
10 1
|
cofmpt |
⊢ ( 𝜑 → ( ℑ ∘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ) |
12 |
11
|
eleq1d |
⊢ ( 𝜑 → ( ( ℑ ∘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ∈ MblFn ↔ ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ∈ MblFn ) ) |
13 |
8 12
|
anbi12d |
⊢ ( 𝜑 → ( ( ( ℜ ∘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ∈ MblFn ∧ ( ℑ ∘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ∈ MblFn ) ↔ ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ∈ MblFn ) ) ) |
14 |
4 13
|
bitrd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ↔ ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ∈ MblFn ) ) ) |