| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ismbfcn2.1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ℂ ) | 
						
							| 2 | 1 | fmpttd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 ) : 𝐴 ⟶ ℂ ) | 
						
							| 3 |  | ismbfcn | ⊢ ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) : 𝐴 ⟶ ℂ  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  MblFn  ↔  ( ( ℜ  ∘  ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  ∈  MblFn  ∧  ( ℑ  ∘  ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  ∈  MblFn ) ) ) | 
						
							| 4 | 2 3 | syl | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  MblFn  ↔  ( ( ℜ  ∘  ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  ∈  MblFn  ∧  ( ℑ  ∘  ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  ∈  MblFn ) ) ) | 
						
							| 5 |  | ref | ⊢ ℜ : ℂ ⟶ ℝ | 
						
							| 6 | 5 | a1i | ⊢ ( 𝜑  →  ℜ : ℂ ⟶ ℝ ) | 
						
							| 7 | 6 1 | cofmpt | ⊢ ( 𝜑  →  ( ℜ  ∘  ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  =  ( 𝑥  ∈  𝐴  ↦  ( ℜ ‘ 𝐵 ) ) ) | 
						
							| 8 | 7 | eleq1d | ⊢ ( 𝜑  →  ( ( ℜ  ∘  ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  ∈  MblFn  ↔  ( 𝑥  ∈  𝐴  ↦  ( ℜ ‘ 𝐵 ) )  ∈  MblFn ) ) | 
						
							| 9 |  | imf | ⊢ ℑ : ℂ ⟶ ℝ | 
						
							| 10 | 9 | a1i | ⊢ ( 𝜑  →  ℑ : ℂ ⟶ ℝ ) | 
						
							| 11 | 10 1 | cofmpt | ⊢ ( 𝜑  →  ( ℑ  ∘  ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  =  ( 𝑥  ∈  𝐴  ↦  ( ℑ ‘ 𝐵 ) ) ) | 
						
							| 12 | 11 | eleq1d | ⊢ ( 𝜑  →  ( ( ℑ  ∘  ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  ∈  MblFn  ↔  ( 𝑥  ∈  𝐴  ↦  ( ℑ ‘ 𝐵 ) )  ∈  MblFn ) ) | 
						
							| 13 | 8 12 | anbi12d | ⊢ ( 𝜑  →  ( ( ( ℜ  ∘  ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  ∈  MblFn  ∧  ( ℑ  ∘  ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  ∈  MblFn )  ↔  ( ( 𝑥  ∈  𝐴  ↦  ( ℜ ‘ 𝐵 ) )  ∈  MblFn  ∧  ( 𝑥  ∈  𝐴  ↦  ( ℑ ‘ 𝐵 ) )  ∈  MblFn ) ) ) | 
						
							| 14 | 4 13 | bitrd | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  MblFn  ↔  ( ( 𝑥  ∈  𝐴  ↦  ( ℜ ‘ 𝐵 ) )  ∈  MblFn  ∧  ( 𝑥  ∈  𝐴  ↦  ( ℑ ‘ 𝐵 ) )  ∈  MblFn ) ) ) |