| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ismbfd.1 | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ ℝ ) | 
						
							| 2 |  | ismbfd.2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ* )  →  ( ◡ 𝐹  “  ( 𝑥 (,) +∞ ) )  ∈  dom  vol ) | 
						
							| 3 |  | ismbfd.3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ* )  →  ( ◡ 𝐹  “  ( -∞ (,) 𝑥 ) )  ∈  dom  vol ) | 
						
							| 4 |  | ioof | ⊢ (,) : ( ℝ*  ×  ℝ* ) ⟶ 𝒫  ℝ | 
						
							| 5 |  | ffn | ⊢ ( (,) : ( ℝ*  ×  ℝ* ) ⟶ 𝒫  ℝ  →  (,)  Fn  ( ℝ*  ×  ℝ* ) ) | 
						
							| 6 |  | ovelrn | ⊢ ( (,)  Fn  ( ℝ*  ×  ℝ* )  →  ( 𝑧  ∈  ran  (,)  ↔  ∃ 𝑥  ∈  ℝ* ∃ 𝑦  ∈  ℝ* 𝑧  =  ( 𝑥 (,) 𝑦 ) ) ) | 
						
							| 7 | 4 5 6 | mp2b | ⊢ ( 𝑧  ∈  ran  (,)  ↔  ∃ 𝑥  ∈  ℝ* ∃ 𝑦  ∈  ℝ* 𝑧  =  ( 𝑥 (,) 𝑦 ) ) | 
						
							| 8 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ* ) )  →  𝑥  ∈  ℝ* ) | 
						
							| 9 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 10 | 9 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ* ) )  →  +∞  ∈  ℝ* ) | 
						
							| 11 |  | mnfxr | ⊢ -∞  ∈  ℝ* | 
						
							| 12 | 11 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ* ) )  →  -∞  ∈  ℝ* ) | 
						
							| 13 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ* ) )  →  𝑦  ∈  ℝ* ) | 
						
							| 14 |  | iooin | ⊢ ( ( ( 𝑥  ∈  ℝ*  ∧  +∞  ∈  ℝ* )  ∧  ( -∞  ∈  ℝ*  ∧  𝑦  ∈  ℝ* ) )  →  ( ( 𝑥 (,) +∞ )  ∩  ( -∞ (,) 𝑦 ) )  =  ( if ( 𝑥  ≤  -∞ ,  -∞ ,  𝑥 ) (,) if ( +∞  ≤  𝑦 ,  +∞ ,  𝑦 ) ) ) | 
						
							| 15 | 8 10 12 13 14 | syl22anc | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ* ) )  →  ( ( 𝑥 (,) +∞ )  ∩  ( -∞ (,) 𝑦 ) )  =  ( if ( 𝑥  ≤  -∞ ,  -∞ ,  𝑥 ) (,) if ( +∞  ≤  𝑦 ,  +∞ ,  𝑦 ) ) ) | 
						
							| 16 |  | ifcl | ⊢ ( ( -∞  ∈  ℝ*  ∧  𝑥  ∈  ℝ* )  →  if ( 𝑥  ≤  -∞ ,  -∞ ,  𝑥 )  ∈  ℝ* ) | 
						
							| 17 | 11 8 16 | sylancr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ* ) )  →  if ( 𝑥  ≤  -∞ ,  -∞ ,  𝑥 )  ∈  ℝ* ) | 
						
							| 18 |  | mnfle | ⊢ ( 𝑥  ∈  ℝ*  →  -∞  ≤  𝑥 ) | 
						
							| 19 |  | xrleid | ⊢ ( 𝑥  ∈  ℝ*  →  𝑥  ≤  𝑥 ) | 
						
							| 20 |  | breq1 | ⊢ ( -∞  =  if ( 𝑥  ≤  -∞ ,  -∞ ,  𝑥 )  →  ( -∞  ≤  𝑥  ↔  if ( 𝑥  ≤  -∞ ,  -∞ ,  𝑥 )  ≤  𝑥 ) ) | 
						
							| 21 |  | breq1 | ⊢ ( 𝑥  =  if ( 𝑥  ≤  -∞ ,  -∞ ,  𝑥 )  →  ( 𝑥  ≤  𝑥  ↔  if ( 𝑥  ≤  -∞ ,  -∞ ,  𝑥 )  ≤  𝑥 ) ) | 
						
							| 22 | 20 21 | ifboth | ⊢ ( ( -∞  ≤  𝑥  ∧  𝑥  ≤  𝑥 )  →  if ( 𝑥  ≤  -∞ ,  -∞ ,  𝑥 )  ≤  𝑥 ) | 
						
							| 23 | 18 19 22 | syl2anc | ⊢ ( 𝑥  ∈  ℝ*  →  if ( 𝑥  ≤  -∞ ,  -∞ ,  𝑥 )  ≤  𝑥 ) | 
						
							| 24 | 23 | ad2antrl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ* ) )  →  if ( 𝑥  ≤  -∞ ,  -∞ ,  𝑥 )  ≤  𝑥 ) | 
						
							| 25 |  | xrmax1 | ⊢ ( ( 𝑥  ∈  ℝ*  ∧  -∞  ∈  ℝ* )  →  𝑥  ≤  if ( 𝑥  ≤  -∞ ,  -∞ ,  𝑥 ) ) | 
						
							| 26 | 8 11 25 | sylancl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ* ) )  →  𝑥  ≤  if ( 𝑥  ≤  -∞ ,  -∞ ,  𝑥 ) ) | 
						
							| 27 | 17 8 24 26 | xrletrid | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ* ) )  →  if ( 𝑥  ≤  -∞ ,  -∞ ,  𝑥 )  =  𝑥 ) | 
						
							| 28 |  | ifcl | ⊢ ( ( +∞  ∈  ℝ*  ∧  𝑦  ∈  ℝ* )  →  if ( +∞  ≤  𝑦 ,  +∞ ,  𝑦 )  ∈  ℝ* ) | 
						
							| 29 | 9 13 28 | sylancr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ* ) )  →  if ( +∞  ≤  𝑦 ,  +∞ ,  𝑦 )  ∈  ℝ* ) | 
						
							| 30 |  | xrmin2 | ⊢ ( ( +∞  ∈  ℝ*  ∧  𝑦  ∈  ℝ* )  →  if ( +∞  ≤  𝑦 ,  +∞ ,  𝑦 )  ≤  𝑦 ) | 
						
							| 31 | 9 13 30 | sylancr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ* ) )  →  if ( +∞  ≤  𝑦 ,  +∞ ,  𝑦 )  ≤  𝑦 ) | 
						
							| 32 |  | pnfge | ⊢ ( 𝑦  ∈  ℝ*  →  𝑦  ≤  +∞ ) | 
						
							| 33 |  | xrleid | ⊢ ( 𝑦  ∈  ℝ*  →  𝑦  ≤  𝑦 ) | 
						
							| 34 |  | breq2 | ⊢ ( +∞  =  if ( +∞  ≤  𝑦 ,  +∞ ,  𝑦 )  →  ( 𝑦  ≤  +∞  ↔  𝑦  ≤  if ( +∞  ≤  𝑦 ,  +∞ ,  𝑦 ) ) ) | 
						
							| 35 |  | breq2 | ⊢ ( 𝑦  =  if ( +∞  ≤  𝑦 ,  +∞ ,  𝑦 )  →  ( 𝑦  ≤  𝑦  ↔  𝑦  ≤  if ( +∞  ≤  𝑦 ,  +∞ ,  𝑦 ) ) ) | 
						
							| 36 | 34 35 | ifboth | ⊢ ( ( 𝑦  ≤  +∞  ∧  𝑦  ≤  𝑦 )  →  𝑦  ≤  if ( +∞  ≤  𝑦 ,  +∞ ,  𝑦 ) ) | 
						
							| 37 | 32 33 36 | syl2anc | ⊢ ( 𝑦  ∈  ℝ*  →  𝑦  ≤  if ( +∞  ≤  𝑦 ,  +∞ ,  𝑦 ) ) | 
						
							| 38 | 37 | ad2antll | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ* ) )  →  𝑦  ≤  if ( +∞  ≤  𝑦 ,  +∞ ,  𝑦 ) ) | 
						
							| 39 | 29 13 31 38 | xrletrid | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ* ) )  →  if ( +∞  ≤  𝑦 ,  +∞ ,  𝑦 )  =  𝑦 ) | 
						
							| 40 | 27 39 | oveq12d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ* ) )  →  ( if ( 𝑥  ≤  -∞ ,  -∞ ,  𝑥 ) (,) if ( +∞  ≤  𝑦 ,  +∞ ,  𝑦 ) )  =  ( 𝑥 (,) 𝑦 ) ) | 
						
							| 41 | 15 40 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ* ) )  →  ( ( 𝑥 (,) +∞ )  ∩  ( -∞ (,) 𝑦 ) )  =  ( 𝑥 (,) 𝑦 ) ) | 
						
							| 42 | 41 | imaeq2d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ* ) )  →  ( ◡ 𝐹  “  ( ( 𝑥 (,) +∞ )  ∩  ( -∞ (,) 𝑦 ) ) )  =  ( ◡ 𝐹  “  ( 𝑥 (,) 𝑦 ) ) ) | 
						
							| 43 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ* ) )  →  𝐹 : 𝐴 ⟶ ℝ ) | 
						
							| 44 | 43 | ffund | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ* ) )  →  Fun  𝐹 ) | 
						
							| 45 |  | inpreima | ⊢ ( Fun  𝐹  →  ( ◡ 𝐹  “  ( ( 𝑥 (,) +∞ )  ∩  ( -∞ (,) 𝑦 ) ) )  =  ( ( ◡ 𝐹  “  ( 𝑥 (,) +∞ ) )  ∩  ( ◡ 𝐹  “  ( -∞ (,) 𝑦 ) ) ) ) | 
						
							| 46 | 44 45 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ* ) )  →  ( ◡ 𝐹  “  ( ( 𝑥 (,) +∞ )  ∩  ( -∞ (,) 𝑦 ) ) )  =  ( ( ◡ 𝐹  “  ( 𝑥 (,) +∞ ) )  ∩  ( ◡ 𝐹  “  ( -∞ (,) 𝑦 ) ) ) ) | 
						
							| 47 | 42 46 | eqtr3d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ* ) )  →  ( ◡ 𝐹  “  ( 𝑥 (,) 𝑦 ) )  =  ( ( ◡ 𝐹  “  ( 𝑥 (,) +∞ ) )  ∩  ( ◡ 𝐹  “  ( -∞ (,) 𝑦 ) ) ) ) | 
						
							| 48 | 2 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ* ) )  →  ( ◡ 𝐹  “  ( 𝑥 (,) +∞ ) )  ∈  dom  vol ) | 
						
							| 49 | 3 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ℝ* ( ◡ 𝐹  “  ( -∞ (,) 𝑥 ) )  ∈  dom  vol ) | 
						
							| 50 |  | oveq2 | ⊢ ( 𝑥  =  𝑦  →  ( -∞ (,) 𝑥 )  =  ( -∞ (,) 𝑦 ) ) | 
						
							| 51 | 50 | imaeq2d | ⊢ ( 𝑥  =  𝑦  →  ( ◡ 𝐹  “  ( -∞ (,) 𝑥 ) )  =  ( ◡ 𝐹  “  ( -∞ (,) 𝑦 ) ) ) | 
						
							| 52 | 51 | eleq1d | ⊢ ( 𝑥  =  𝑦  →  ( ( ◡ 𝐹  “  ( -∞ (,) 𝑥 ) )  ∈  dom  vol  ↔  ( ◡ 𝐹  “  ( -∞ (,) 𝑦 ) )  ∈  dom  vol ) ) | 
						
							| 53 | 52 | rspccva | ⊢ ( ( ∀ 𝑥  ∈  ℝ* ( ◡ 𝐹  “  ( -∞ (,) 𝑥 ) )  ∈  dom  vol  ∧  𝑦  ∈  ℝ* )  →  ( ◡ 𝐹  “  ( -∞ (,) 𝑦 ) )  ∈  dom  vol ) | 
						
							| 54 | 49 53 | sylan | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ* )  →  ( ◡ 𝐹  “  ( -∞ (,) 𝑦 ) )  ∈  dom  vol ) | 
						
							| 55 | 54 | adantrl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ* ) )  →  ( ◡ 𝐹  “  ( -∞ (,) 𝑦 ) )  ∈  dom  vol ) | 
						
							| 56 |  | inmbl | ⊢ ( ( ( ◡ 𝐹  “  ( 𝑥 (,) +∞ ) )  ∈  dom  vol  ∧  ( ◡ 𝐹  “  ( -∞ (,) 𝑦 ) )  ∈  dom  vol )  →  ( ( ◡ 𝐹  “  ( 𝑥 (,) +∞ ) )  ∩  ( ◡ 𝐹  “  ( -∞ (,) 𝑦 ) ) )  ∈  dom  vol ) | 
						
							| 57 | 48 55 56 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ* ) )  →  ( ( ◡ 𝐹  “  ( 𝑥 (,) +∞ ) )  ∩  ( ◡ 𝐹  “  ( -∞ (,) 𝑦 ) ) )  ∈  dom  vol ) | 
						
							| 58 | 47 57 | eqeltrd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ* ) )  →  ( ◡ 𝐹  “  ( 𝑥 (,) 𝑦 ) )  ∈  dom  vol ) | 
						
							| 59 |  | imaeq2 | ⊢ ( 𝑧  =  ( 𝑥 (,) 𝑦 )  →  ( ◡ 𝐹  “  𝑧 )  =  ( ◡ 𝐹  “  ( 𝑥 (,) 𝑦 ) ) ) | 
						
							| 60 | 59 | eleq1d | ⊢ ( 𝑧  =  ( 𝑥 (,) 𝑦 )  →  ( ( ◡ 𝐹  “  𝑧 )  ∈  dom  vol  ↔  ( ◡ 𝐹  “  ( 𝑥 (,) 𝑦 ) )  ∈  dom  vol ) ) | 
						
							| 61 | 58 60 | syl5ibrcom | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ* ) )  →  ( 𝑧  =  ( 𝑥 (,) 𝑦 )  →  ( ◡ 𝐹  “  𝑧 )  ∈  dom  vol ) ) | 
						
							| 62 | 61 | rexlimdvva | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  ℝ* ∃ 𝑦  ∈  ℝ* 𝑧  =  ( 𝑥 (,) 𝑦 )  →  ( ◡ 𝐹  “  𝑧 )  ∈  dom  vol ) ) | 
						
							| 63 | 7 62 | biimtrid | ⊢ ( 𝜑  →  ( 𝑧  ∈  ran  (,)  →  ( ◡ 𝐹  “  𝑧 )  ∈  dom  vol ) ) | 
						
							| 64 | 63 | ralrimiv | ⊢ ( 𝜑  →  ∀ 𝑧  ∈  ran  (,) ( ◡ 𝐹  “  𝑧 )  ∈  dom  vol ) | 
						
							| 65 |  | ismbf | ⊢ ( 𝐹 : 𝐴 ⟶ ℝ  →  ( 𝐹  ∈  MblFn  ↔  ∀ 𝑧  ∈  ran  (,) ( ◡ 𝐹  “  𝑧 )  ∈  dom  vol ) ) | 
						
							| 66 | 1 65 | syl | ⊢ ( 𝜑  →  ( 𝐹  ∈  MblFn  ↔  ∀ 𝑧  ∈  ran  (,) ( ◡ 𝐹  “  𝑧 )  ∈  dom  vol ) ) | 
						
							| 67 | 64 66 | mpbird | ⊢ ( 𝜑  →  𝐹  ∈  MblFn ) |