Step |
Hyp |
Ref |
Expression |
1 |
|
ismbfd.1 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ ) |
2 |
|
ismbfd.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ* ) → ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) ∈ dom vol ) |
3 |
|
ismbfd.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ* ) → ( ◡ 𝐹 “ ( -∞ (,) 𝑥 ) ) ∈ dom vol ) |
4 |
|
ioof |
⊢ (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ |
5 |
|
ffn |
⊢ ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ → (,) Fn ( ℝ* × ℝ* ) ) |
6 |
|
ovelrn |
⊢ ( (,) Fn ( ℝ* × ℝ* ) → ( 𝑧 ∈ ran (,) ↔ ∃ 𝑥 ∈ ℝ* ∃ 𝑦 ∈ ℝ* 𝑧 = ( 𝑥 (,) 𝑦 ) ) ) |
7 |
4 5 6
|
mp2b |
⊢ ( 𝑧 ∈ ran (,) ↔ ∃ 𝑥 ∈ ℝ* ∃ 𝑦 ∈ ℝ* 𝑧 = ( 𝑥 (,) 𝑦 ) ) |
8 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) → 𝑥 ∈ ℝ* ) |
9 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
10 |
9
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) → +∞ ∈ ℝ* ) |
11 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
12 |
11
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) → -∞ ∈ ℝ* ) |
13 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) → 𝑦 ∈ ℝ* ) |
14 |
|
iooin |
⊢ ( ( ( 𝑥 ∈ ℝ* ∧ +∞ ∈ ℝ* ) ∧ ( -∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) → ( ( 𝑥 (,) +∞ ) ∩ ( -∞ (,) 𝑦 ) ) = ( if ( 𝑥 ≤ -∞ , -∞ , 𝑥 ) (,) if ( +∞ ≤ 𝑦 , +∞ , 𝑦 ) ) ) |
15 |
8 10 12 13 14
|
syl22anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) → ( ( 𝑥 (,) +∞ ) ∩ ( -∞ (,) 𝑦 ) ) = ( if ( 𝑥 ≤ -∞ , -∞ , 𝑥 ) (,) if ( +∞ ≤ 𝑦 , +∞ , 𝑦 ) ) ) |
16 |
|
ifcl |
⊢ ( ( -∞ ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) → if ( 𝑥 ≤ -∞ , -∞ , 𝑥 ) ∈ ℝ* ) |
17 |
11 8 16
|
sylancr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) → if ( 𝑥 ≤ -∞ , -∞ , 𝑥 ) ∈ ℝ* ) |
18 |
|
mnfle |
⊢ ( 𝑥 ∈ ℝ* → -∞ ≤ 𝑥 ) |
19 |
|
xrleid |
⊢ ( 𝑥 ∈ ℝ* → 𝑥 ≤ 𝑥 ) |
20 |
|
breq1 |
⊢ ( -∞ = if ( 𝑥 ≤ -∞ , -∞ , 𝑥 ) → ( -∞ ≤ 𝑥 ↔ if ( 𝑥 ≤ -∞ , -∞ , 𝑥 ) ≤ 𝑥 ) ) |
21 |
|
breq1 |
⊢ ( 𝑥 = if ( 𝑥 ≤ -∞ , -∞ , 𝑥 ) → ( 𝑥 ≤ 𝑥 ↔ if ( 𝑥 ≤ -∞ , -∞ , 𝑥 ) ≤ 𝑥 ) ) |
22 |
20 21
|
ifboth |
⊢ ( ( -∞ ≤ 𝑥 ∧ 𝑥 ≤ 𝑥 ) → if ( 𝑥 ≤ -∞ , -∞ , 𝑥 ) ≤ 𝑥 ) |
23 |
18 19 22
|
syl2anc |
⊢ ( 𝑥 ∈ ℝ* → if ( 𝑥 ≤ -∞ , -∞ , 𝑥 ) ≤ 𝑥 ) |
24 |
23
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) → if ( 𝑥 ≤ -∞ , -∞ , 𝑥 ) ≤ 𝑥 ) |
25 |
|
xrmax1 |
⊢ ( ( 𝑥 ∈ ℝ* ∧ -∞ ∈ ℝ* ) → 𝑥 ≤ if ( 𝑥 ≤ -∞ , -∞ , 𝑥 ) ) |
26 |
8 11 25
|
sylancl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) → 𝑥 ≤ if ( 𝑥 ≤ -∞ , -∞ , 𝑥 ) ) |
27 |
17 8 24 26
|
xrletrid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) → if ( 𝑥 ≤ -∞ , -∞ , 𝑥 ) = 𝑥 ) |
28 |
|
ifcl |
⊢ ( ( +∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → if ( +∞ ≤ 𝑦 , +∞ , 𝑦 ) ∈ ℝ* ) |
29 |
9 13 28
|
sylancr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) → if ( +∞ ≤ 𝑦 , +∞ , 𝑦 ) ∈ ℝ* ) |
30 |
|
xrmin2 |
⊢ ( ( +∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → if ( +∞ ≤ 𝑦 , +∞ , 𝑦 ) ≤ 𝑦 ) |
31 |
9 13 30
|
sylancr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) → if ( +∞ ≤ 𝑦 , +∞ , 𝑦 ) ≤ 𝑦 ) |
32 |
|
pnfge |
⊢ ( 𝑦 ∈ ℝ* → 𝑦 ≤ +∞ ) |
33 |
|
xrleid |
⊢ ( 𝑦 ∈ ℝ* → 𝑦 ≤ 𝑦 ) |
34 |
|
breq2 |
⊢ ( +∞ = if ( +∞ ≤ 𝑦 , +∞ , 𝑦 ) → ( 𝑦 ≤ +∞ ↔ 𝑦 ≤ if ( +∞ ≤ 𝑦 , +∞ , 𝑦 ) ) ) |
35 |
|
breq2 |
⊢ ( 𝑦 = if ( +∞ ≤ 𝑦 , +∞ , 𝑦 ) → ( 𝑦 ≤ 𝑦 ↔ 𝑦 ≤ if ( +∞ ≤ 𝑦 , +∞ , 𝑦 ) ) ) |
36 |
34 35
|
ifboth |
⊢ ( ( 𝑦 ≤ +∞ ∧ 𝑦 ≤ 𝑦 ) → 𝑦 ≤ if ( +∞ ≤ 𝑦 , +∞ , 𝑦 ) ) |
37 |
32 33 36
|
syl2anc |
⊢ ( 𝑦 ∈ ℝ* → 𝑦 ≤ if ( +∞ ≤ 𝑦 , +∞ , 𝑦 ) ) |
38 |
37
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) → 𝑦 ≤ if ( +∞ ≤ 𝑦 , +∞ , 𝑦 ) ) |
39 |
29 13 31 38
|
xrletrid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) → if ( +∞ ≤ 𝑦 , +∞ , 𝑦 ) = 𝑦 ) |
40 |
27 39
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) → ( if ( 𝑥 ≤ -∞ , -∞ , 𝑥 ) (,) if ( +∞ ≤ 𝑦 , +∞ , 𝑦 ) ) = ( 𝑥 (,) 𝑦 ) ) |
41 |
15 40
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) → ( ( 𝑥 (,) +∞ ) ∩ ( -∞ (,) 𝑦 ) ) = ( 𝑥 (,) 𝑦 ) ) |
42 |
41
|
imaeq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) → ( ◡ 𝐹 “ ( ( 𝑥 (,) +∞ ) ∩ ( -∞ (,) 𝑦 ) ) ) = ( ◡ 𝐹 “ ( 𝑥 (,) 𝑦 ) ) ) |
43 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) → 𝐹 : 𝐴 ⟶ ℝ ) |
44 |
43
|
ffund |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) → Fun 𝐹 ) |
45 |
|
inpreima |
⊢ ( Fun 𝐹 → ( ◡ 𝐹 “ ( ( 𝑥 (,) +∞ ) ∩ ( -∞ (,) 𝑦 ) ) ) = ( ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) ∩ ( ◡ 𝐹 “ ( -∞ (,) 𝑦 ) ) ) ) |
46 |
44 45
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) → ( ◡ 𝐹 “ ( ( 𝑥 (,) +∞ ) ∩ ( -∞ (,) 𝑦 ) ) ) = ( ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) ∩ ( ◡ 𝐹 “ ( -∞ (,) 𝑦 ) ) ) ) |
47 |
42 46
|
eqtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) → ( ◡ 𝐹 “ ( 𝑥 (,) 𝑦 ) ) = ( ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) ∩ ( ◡ 𝐹 “ ( -∞ (,) 𝑦 ) ) ) ) |
48 |
2
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) → ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) ∈ dom vol ) |
49 |
3
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ* ( ◡ 𝐹 “ ( -∞ (,) 𝑥 ) ) ∈ dom vol ) |
50 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( -∞ (,) 𝑥 ) = ( -∞ (,) 𝑦 ) ) |
51 |
50
|
imaeq2d |
⊢ ( 𝑥 = 𝑦 → ( ◡ 𝐹 “ ( -∞ (,) 𝑥 ) ) = ( ◡ 𝐹 “ ( -∞ (,) 𝑦 ) ) ) |
52 |
51
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ( ◡ 𝐹 “ ( -∞ (,) 𝑥 ) ) ∈ dom vol ↔ ( ◡ 𝐹 “ ( -∞ (,) 𝑦 ) ) ∈ dom vol ) ) |
53 |
52
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ ℝ* ( ◡ 𝐹 “ ( -∞ (,) 𝑥 ) ) ∈ dom vol ∧ 𝑦 ∈ ℝ* ) → ( ◡ 𝐹 “ ( -∞ (,) 𝑦 ) ) ∈ dom vol ) |
54 |
49 53
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) → ( ◡ 𝐹 “ ( -∞ (,) 𝑦 ) ) ∈ dom vol ) |
55 |
54
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) → ( ◡ 𝐹 “ ( -∞ (,) 𝑦 ) ) ∈ dom vol ) |
56 |
|
inmbl |
⊢ ( ( ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) ∈ dom vol ∧ ( ◡ 𝐹 “ ( -∞ (,) 𝑦 ) ) ∈ dom vol ) → ( ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) ∩ ( ◡ 𝐹 “ ( -∞ (,) 𝑦 ) ) ) ∈ dom vol ) |
57 |
48 55 56
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) → ( ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) ∩ ( ◡ 𝐹 “ ( -∞ (,) 𝑦 ) ) ) ∈ dom vol ) |
58 |
47 57
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) → ( ◡ 𝐹 “ ( 𝑥 (,) 𝑦 ) ) ∈ dom vol ) |
59 |
|
imaeq2 |
⊢ ( 𝑧 = ( 𝑥 (,) 𝑦 ) → ( ◡ 𝐹 “ 𝑧 ) = ( ◡ 𝐹 “ ( 𝑥 (,) 𝑦 ) ) ) |
60 |
59
|
eleq1d |
⊢ ( 𝑧 = ( 𝑥 (,) 𝑦 ) → ( ( ◡ 𝐹 “ 𝑧 ) ∈ dom vol ↔ ( ◡ 𝐹 “ ( 𝑥 (,) 𝑦 ) ) ∈ dom vol ) ) |
61 |
58 60
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) → ( 𝑧 = ( 𝑥 (,) 𝑦 ) → ( ◡ 𝐹 “ 𝑧 ) ∈ dom vol ) ) |
62 |
61
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ℝ* ∃ 𝑦 ∈ ℝ* 𝑧 = ( 𝑥 (,) 𝑦 ) → ( ◡ 𝐹 “ 𝑧 ) ∈ dom vol ) ) |
63 |
7 62
|
syl5bi |
⊢ ( 𝜑 → ( 𝑧 ∈ ran (,) → ( ◡ 𝐹 “ 𝑧 ) ∈ dom vol ) ) |
64 |
63
|
ralrimiv |
⊢ ( 𝜑 → ∀ 𝑧 ∈ ran (,) ( ◡ 𝐹 “ 𝑧 ) ∈ dom vol ) |
65 |
|
ismbf |
⊢ ( 𝐹 : 𝐴 ⟶ ℝ → ( 𝐹 ∈ MblFn ↔ ∀ 𝑧 ∈ ran (,) ( ◡ 𝐹 “ 𝑧 ) ∈ dom vol ) ) |
66 |
1 65
|
syl |
⊢ ( 𝜑 → ( 𝐹 ∈ MblFn ↔ ∀ 𝑧 ∈ ran (,) ( ◡ 𝐹 “ 𝑧 ) ∈ dom vol ) ) |
67 |
64 66
|
mpbird |
⊢ ( 𝜑 → 𝐹 ∈ MblFn ) |