Step |
Hyp |
Ref |
Expression |
1 |
|
ineq2 |
⊢ ( 𝑦 = 𝐴 → ( 𝑥 ∩ 𝑦 ) = ( 𝑥 ∩ 𝐴 ) ) |
2 |
1
|
fveq2d |
⊢ ( 𝑦 = 𝐴 → ( vol* ‘ ( 𝑥 ∩ 𝑦 ) ) = ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) ) |
3 |
|
difeq2 |
⊢ ( 𝑦 = 𝐴 → ( 𝑥 ∖ 𝑦 ) = ( 𝑥 ∖ 𝐴 ) ) |
4 |
3
|
fveq2d |
⊢ ( 𝑦 = 𝐴 → ( vol* ‘ ( 𝑥 ∖ 𝑦 ) ) = ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) |
5 |
2 4
|
oveq12d |
⊢ ( 𝑦 = 𝐴 → ( ( vol* ‘ ( 𝑥 ∩ 𝑦 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝑦 ) ) ) = ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ) |
6 |
5
|
eqeq2d |
⊢ ( 𝑦 = 𝐴 → ( ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝑦 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝑦 ) ) ) ↔ ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ) ) |
7 |
6
|
ralbidv |
⊢ ( 𝑦 = 𝐴 → ( ∀ 𝑥 ∈ ( ◡ vol* “ ℝ ) ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝑦 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝑦 ) ) ) ↔ ∀ 𝑥 ∈ ( ◡ vol* “ ℝ ) ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ) ) |
8 |
|
df-vol |
⊢ vol = ( vol* ↾ { 𝑦 ∣ ∀ 𝑥 ∈ ( ◡ vol* “ ℝ ) ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝑦 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝑦 ) ) ) } ) |
9 |
8
|
dmeqi |
⊢ dom vol = dom ( vol* ↾ { 𝑦 ∣ ∀ 𝑥 ∈ ( ◡ vol* “ ℝ ) ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝑦 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝑦 ) ) ) } ) |
10 |
|
dmres |
⊢ dom ( vol* ↾ { 𝑦 ∣ ∀ 𝑥 ∈ ( ◡ vol* “ ℝ ) ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝑦 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝑦 ) ) ) } ) = ( { 𝑦 ∣ ∀ 𝑥 ∈ ( ◡ vol* “ ℝ ) ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝑦 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝑦 ) ) ) } ∩ dom vol* ) |
11 |
|
ovolf |
⊢ vol* : 𝒫 ℝ ⟶ ( 0 [,] +∞ ) |
12 |
11
|
fdmi |
⊢ dom vol* = 𝒫 ℝ |
13 |
12
|
ineq2i |
⊢ ( { 𝑦 ∣ ∀ 𝑥 ∈ ( ◡ vol* “ ℝ ) ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝑦 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝑦 ) ) ) } ∩ dom vol* ) = ( { 𝑦 ∣ ∀ 𝑥 ∈ ( ◡ vol* “ ℝ ) ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝑦 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝑦 ) ) ) } ∩ 𝒫 ℝ ) |
14 |
9 10 13
|
3eqtri |
⊢ dom vol = ( { 𝑦 ∣ ∀ 𝑥 ∈ ( ◡ vol* “ ℝ ) ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝑦 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝑦 ) ) ) } ∩ 𝒫 ℝ ) |
15 |
|
dfrab2 |
⊢ { 𝑦 ∈ 𝒫 ℝ ∣ ∀ 𝑥 ∈ ( ◡ vol* “ ℝ ) ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝑦 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝑦 ) ) ) } = ( { 𝑦 ∣ ∀ 𝑥 ∈ ( ◡ vol* “ ℝ ) ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝑦 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝑦 ) ) ) } ∩ 𝒫 ℝ ) |
16 |
14 15
|
eqtr4i |
⊢ dom vol = { 𝑦 ∈ 𝒫 ℝ ∣ ∀ 𝑥 ∈ ( ◡ vol* “ ℝ ) ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝑦 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝑦 ) ) ) } |
17 |
7 16
|
elrab2 |
⊢ ( 𝐴 ∈ dom vol ↔ ( 𝐴 ∈ 𝒫 ℝ ∧ ∀ 𝑥 ∈ ( ◡ vol* “ ℝ ) ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ) ) |
18 |
|
reex |
⊢ ℝ ∈ V |
19 |
18
|
elpw2 |
⊢ ( 𝐴 ∈ 𝒫 ℝ ↔ 𝐴 ⊆ ℝ ) |
20 |
|
ffn |
⊢ ( vol* : 𝒫 ℝ ⟶ ( 0 [,] +∞ ) → vol* Fn 𝒫 ℝ ) |
21 |
|
elpreima |
⊢ ( vol* Fn 𝒫 ℝ → ( 𝑥 ∈ ( ◡ vol* “ ℝ ) ↔ ( 𝑥 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) ) |
22 |
11 20 21
|
mp2b |
⊢ ( 𝑥 ∈ ( ◡ vol* “ ℝ ) ↔ ( 𝑥 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) |
23 |
22
|
imbi1i |
⊢ ( ( 𝑥 ∈ ( ◡ vol* “ ℝ ) → ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ) ↔ ( ( 𝑥 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ) ) |
24 |
|
impexp |
⊢ ( ( ( 𝑥 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ) ↔ ( 𝑥 ∈ 𝒫 ℝ → ( ( vol* ‘ 𝑥 ) ∈ ℝ → ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ) ) ) |
25 |
23 24
|
bitri |
⊢ ( ( 𝑥 ∈ ( ◡ vol* “ ℝ ) → ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ) ↔ ( 𝑥 ∈ 𝒫 ℝ → ( ( vol* ‘ 𝑥 ) ∈ ℝ → ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ) ) ) |
26 |
25
|
ralbii2 |
⊢ ( ∀ 𝑥 ∈ ( ◡ vol* “ ℝ ) ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ↔ ∀ 𝑥 ∈ 𝒫 ℝ ( ( vol* ‘ 𝑥 ) ∈ ℝ → ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ) ) |
27 |
19 26
|
anbi12i |
⊢ ( ( 𝐴 ∈ 𝒫 ℝ ∧ ∀ 𝑥 ∈ ( ◡ vol* “ ℝ ) ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ) ↔ ( 𝐴 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝒫 ℝ ( ( vol* ‘ 𝑥 ) ∈ ℝ → ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ) ) ) |
28 |
17 27
|
bitri |
⊢ ( 𝐴 ∈ dom vol ↔ ( 𝐴 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝒫 ℝ ( ( vol* ‘ 𝑥 ) ∈ ℝ → ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ) ) ) |