| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elex |
⊢ ( 𝑋 ∈ 𝐴 → 𝑋 ∈ V ) |
| 2 |
|
xpeq12 |
⊢ ( ( 𝑡 = 𝑋 ∧ 𝑡 = 𝑋 ) → ( 𝑡 × 𝑡 ) = ( 𝑋 × 𝑋 ) ) |
| 3 |
2
|
anidms |
⊢ ( 𝑡 = 𝑋 → ( 𝑡 × 𝑡 ) = ( 𝑋 × 𝑋 ) ) |
| 4 |
3
|
oveq2d |
⊢ ( 𝑡 = 𝑋 → ( ℝ ↑m ( 𝑡 × 𝑡 ) ) = ( ℝ ↑m ( 𝑋 × 𝑋 ) ) ) |
| 5 |
|
raleq |
⊢ ( 𝑡 = 𝑋 → ( ∀ 𝑧 ∈ 𝑡 ( 𝑥 𝑑 𝑦 ) ≤ ( ( 𝑧 𝑑 𝑥 ) + ( 𝑧 𝑑 𝑦 ) ) ↔ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝑑 𝑦 ) ≤ ( ( 𝑧 𝑑 𝑥 ) + ( 𝑧 𝑑 𝑦 ) ) ) ) |
| 6 |
5
|
anbi2d |
⊢ ( 𝑡 = 𝑋 → ( ( ( ( 𝑥 𝑑 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑡 ( 𝑥 𝑑 𝑦 ) ≤ ( ( 𝑧 𝑑 𝑥 ) + ( 𝑧 𝑑 𝑦 ) ) ) ↔ ( ( ( 𝑥 𝑑 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝑑 𝑦 ) ≤ ( ( 𝑧 𝑑 𝑥 ) + ( 𝑧 𝑑 𝑦 ) ) ) ) ) |
| 7 |
6
|
raleqbi1dv |
⊢ ( 𝑡 = 𝑋 → ( ∀ 𝑦 ∈ 𝑡 ( ( ( 𝑥 𝑑 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑡 ( 𝑥 𝑑 𝑦 ) ≤ ( ( 𝑧 𝑑 𝑥 ) + ( 𝑧 𝑑 𝑦 ) ) ) ↔ ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑥 𝑑 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝑑 𝑦 ) ≤ ( ( 𝑧 𝑑 𝑥 ) + ( 𝑧 𝑑 𝑦 ) ) ) ) ) |
| 8 |
7
|
raleqbi1dv |
⊢ ( 𝑡 = 𝑋 → ( ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( ( ( 𝑥 𝑑 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑡 ( 𝑥 𝑑 𝑦 ) ≤ ( ( 𝑧 𝑑 𝑥 ) + ( 𝑧 𝑑 𝑦 ) ) ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑥 𝑑 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝑑 𝑦 ) ≤ ( ( 𝑧 𝑑 𝑥 ) + ( 𝑧 𝑑 𝑦 ) ) ) ) ) |
| 9 |
4 8
|
rabeqbidv |
⊢ ( 𝑡 = 𝑋 → { 𝑑 ∈ ( ℝ ↑m ( 𝑡 × 𝑡 ) ) ∣ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( ( ( 𝑥 𝑑 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑡 ( 𝑥 𝑑 𝑦 ) ≤ ( ( 𝑧 𝑑 𝑥 ) + ( 𝑧 𝑑 𝑦 ) ) ) } = { 𝑑 ∈ ( ℝ ↑m ( 𝑋 × 𝑋 ) ) ∣ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑥 𝑑 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝑑 𝑦 ) ≤ ( ( 𝑧 𝑑 𝑥 ) + ( 𝑧 𝑑 𝑦 ) ) ) } ) |
| 10 |
|
df-met |
⊢ Met = ( 𝑡 ∈ V ↦ { 𝑑 ∈ ( ℝ ↑m ( 𝑡 × 𝑡 ) ) ∣ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( ( ( 𝑥 𝑑 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑡 ( 𝑥 𝑑 𝑦 ) ≤ ( ( 𝑧 𝑑 𝑥 ) + ( 𝑧 𝑑 𝑦 ) ) ) } ) |
| 11 |
|
ovex |
⊢ ( ℝ ↑m ( 𝑋 × 𝑋 ) ) ∈ V |
| 12 |
11
|
rabex |
⊢ { 𝑑 ∈ ( ℝ ↑m ( 𝑋 × 𝑋 ) ) ∣ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑥 𝑑 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝑑 𝑦 ) ≤ ( ( 𝑧 𝑑 𝑥 ) + ( 𝑧 𝑑 𝑦 ) ) ) } ∈ V |
| 13 |
9 10 12
|
fvmpt |
⊢ ( 𝑋 ∈ V → ( Met ‘ 𝑋 ) = { 𝑑 ∈ ( ℝ ↑m ( 𝑋 × 𝑋 ) ) ∣ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑥 𝑑 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝑑 𝑦 ) ≤ ( ( 𝑧 𝑑 𝑥 ) + ( 𝑧 𝑑 𝑦 ) ) ) } ) |
| 14 |
1 13
|
syl |
⊢ ( 𝑋 ∈ 𝐴 → ( Met ‘ 𝑋 ) = { 𝑑 ∈ ( ℝ ↑m ( 𝑋 × 𝑋 ) ) ∣ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑥 𝑑 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝑑 𝑦 ) ≤ ( ( 𝑧 𝑑 𝑥 ) + ( 𝑧 𝑑 𝑦 ) ) ) } ) |
| 15 |
14
|
eleq2d |
⊢ ( 𝑋 ∈ 𝐴 → ( 𝐷 ∈ ( Met ‘ 𝑋 ) ↔ 𝐷 ∈ { 𝑑 ∈ ( ℝ ↑m ( 𝑋 × 𝑋 ) ) ∣ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑥 𝑑 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝑑 𝑦 ) ≤ ( ( 𝑧 𝑑 𝑥 ) + ( 𝑧 𝑑 𝑦 ) ) ) } ) ) |
| 16 |
|
oveq |
⊢ ( 𝑑 = 𝐷 → ( 𝑥 𝑑 𝑦 ) = ( 𝑥 𝐷 𝑦 ) ) |
| 17 |
16
|
eqeq1d |
⊢ ( 𝑑 = 𝐷 → ( ( 𝑥 𝑑 𝑦 ) = 0 ↔ ( 𝑥 𝐷 𝑦 ) = 0 ) ) |
| 18 |
17
|
bibi1d |
⊢ ( 𝑑 = 𝐷 → ( ( ( 𝑥 𝑑 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ↔ ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ) ) |
| 19 |
|
oveq |
⊢ ( 𝑑 = 𝐷 → ( 𝑧 𝑑 𝑥 ) = ( 𝑧 𝐷 𝑥 ) ) |
| 20 |
|
oveq |
⊢ ( 𝑑 = 𝐷 → ( 𝑧 𝑑 𝑦 ) = ( 𝑧 𝐷 𝑦 ) ) |
| 21 |
19 20
|
oveq12d |
⊢ ( 𝑑 = 𝐷 → ( ( 𝑧 𝑑 𝑥 ) + ( 𝑧 𝑑 𝑦 ) ) = ( ( 𝑧 𝐷 𝑥 ) + ( 𝑧 𝐷 𝑦 ) ) ) |
| 22 |
16 21
|
breq12d |
⊢ ( 𝑑 = 𝐷 → ( ( 𝑥 𝑑 𝑦 ) ≤ ( ( 𝑧 𝑑 𝑥 ) + ( 𝑧 𝑑 𝑦 ) ) ↔ ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) + ( 𝑧 𝐷 𝑦 ) ) ) ) |
| 23 |
22
|
ralbidv |
⊢ ( 𝑑 = 𝐷 → ( ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝑑 𝑦 ) ≤ ( ( 𝑧 𝑑 𝑥 ) + ( 𝑧 𝑑 𝑦 ) ) ↔ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) + ( 𝑧 𝐷 𝑦 ) ) ) ) |
| 24 |
18 23
|
anbi12d |
⊢ ( 𝑑 = 𝐷 → ( ( ( ( 𝑥 𝑑 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝑑 𝑦 ) ≤ ( ( 𝑧 𝑑 𝑥 ) + ( 𝑧 𝑑 𝑦 ) ) ) ↔ ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) + ( 𝑧 𝐷 𝑦 ) ) ) ) ) |
| 25 |
24
|
2ralbidv |
⊢ ( 𝑑 = 𝐷 → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑥 𝑑 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝑑 𝑦 ) ≤ ( ( 𝑧 𝑑 𝑥 ) + ( 𝑧 𝑑 𝑦 ) ) ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) + ( 𝑧 𝐷 𝑦 ) ) ) ) ) |
| 26 |
25
|
elrab |
⊢ ( 𝐷 ∈ { 𝑑 ∈ ( ℝ ↑m ( 𝑋 × 𝑋 ) ) ∣ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑥 𝑑 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝑑 𝑦 ) ≤ ( ( 𝑧 𝑑 𝑥 ) + ( 𝑧 𝑑 𝑦 ) ) ) } ↔ ( 𝐷 ∈ ( ℝ ↑m ( 𝑋 × 𝑋 ) ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) + ( 𝑧 𝐷 𝑦 ) ) ) ) ) |
| 27 |
15 26
|
bitrdi |
⊢ ( 𝑋 ∈ 𝐴 → ( 𝐷 ∈ ( Met ‘ 𝑋 ) ↔ ( 𝐷 ∈ ( ℝ ↑m ( 𝑋 × 𝑋 ) ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) + ( 𝑧 𝐷 𝑦 ) ) ) ) ) ) |
| 28 |
|
reex |
⊢ ℝ ∈ V |
| 29 |
|
sqxpexg |
⊢ ( 𝑋 ∈ 𝐴 → ( 𝑋 × 𝑋 ) ∈ V ) |
| 30 |
|
elmapg |
⊢ ( ( ℝ ∈ V ∧ ( 𝑋 × 𝑋 ) ∈ V ) → ( 𝐷 ∈ ( ℝ ↑m ( 𝑋 × 𝑋 ) ) ↔ 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ ) ) |
| 31 |
28 29 30
|
sylancr |
⊢ ( 𝑋 ∈ 𝐴 → ( 𝐷 ∈ ( ℝ ↑m ( 𝑋 × 𝑋 ) ) ↔ 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ ) ) |
| 32 |
31
|
anbi1d |
⊢ ( 𝑋 ∈ 𝐴 → ( ( 𝐷 ∈ ( ℝ ↑m ( 𝑋 × 𝑋 ) ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) + ( 𝑧 𝐷 𝑦 ) ) ) ) ↔ ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) + ( 𝑧 𝐷 𝑦 ) ) ) ) ) ) |
| 33 |
27 32
|
bitrd |
⊢ ( 𝑋 ∈ 𝐴 → ( 𝐷 ∈ ( Met ‘ 𝑋 ) ↔ ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) + ( 𝑧 𝐷 𝑦 ) ) ) ) ) ) |