| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ismgm.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
| 2 |
|
ismgm.o |
⊢ ⚬ = ( +g ‘ 𝑀 ) |
| 3 |
|
fvexd |
⊢ ( 𝑚 = 𝑀 → ( Base ‘ 𝑚 ) ∈ V ) |
| 4 |
|
fveq2 |
⊢ ( 𝑚 = 𝑀 → ( Base ‘ 𝑚 ) = ( Base ‘ 𝑀 ) ) |
| 5 |
4 1
|
eqtr4di |
⊢ ( 𝑚 = 𝑀 → ( Base ‘ 𝑚 ) = 𝐵 ) |
| 6 |
|
fvexd |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑏 = 𝐵 ) → ( +g ‘ 𝑚 ) ∈ V ) |
| 7 |
|
fveq2 |
⊢ ( 𝑚 = 𝑀 → ( +g ‘ 𝑚 ) = ( +g ‘ 𝑀 ) ) |
| 8 |
7
|
adantr |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑏 = 𝐵 ) → ( +g ‘ 𝑚 ) = ( +g ‘ 𝑀 ) ) |
| 9 |
8 2
|
eqtr4di |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑏 = 𝐵 ) → ( +g ‘ 𝑚 ) = ⚬ ) |
| 10 |
|
simplr |
⊢ ( ( ( 𝑚 = 𝑀 ∧ 𝑏 = 𝐵 ) ∧ 𝑜 = ⚬ ) → 𝑏 = 𝐵 ) |
| 11 |
|
oveq |
⊢ ( 𝑜 = ⚬ → ( 𝑥 𝑜 𝑦 ) = ( 𝑥 ⚬ 𝑦 ) ) |
| 12 |
11
|
adantl |
⊢ ( ( ( 𝑚 = 𝑀 ∧ 𝑏 = 𝐵 ) ∧ 𝑜 = ⚬ ) → ( 𝑥 𝑜 𝑦 ) = ( 𝑥 ⚬ 𝑦 ) ) |
| 13 |
12 10
|
eleq12d |
⊢ ( ( ( 𝑚 = 𝑀 ∧ 𝑏 = 𝐵 ) ∧ 𝑜 = ⚬ ) → ( ( 𝑥 𝑜 𝑦 ) ∈ 𝑏 ↔ ( 𝑥 ⚬ 𝑦 ) ∈ 𝐵 ) ) |
| 14 |
10 13
|
raleqbidv |
⊢ ( ( ( 𝑚 = 𝑀 ∧ 𝑏 = 𝐵 ) ∧ 𝑜 = ⚬ ) → ( ∀ 𝑦 ∈ 𝑏 ( 𝑥 𝑜 𝑦 ) ∈ 𝑏 ↔ ∀ 𝑦 ∈ 𝐵 ( 𝑥 ⚬ 𝑦 ) ∈ 𝐵 ) ) |
| 15 |
10 14
|
raleqbidv |
⊢ ( ( ( 𝑚 = 𝑀 ∧ 𝑏 = 𝐵 ) ∧ 𝑜 = ⚬ ) → ( ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 𝑜 𝑦 ) ∈ 𝑏 ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ⚬ 𝑦 ) ∈ 𝐵 ) ) |
| 16 |
6 9 15
|
sbcied2 |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑏 = 𝐵 ) → ( [ ( +g ‘ 𝑚 ) / 𝑜 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 𝑜 𝑦 ) ∈ 𝑏 ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ⚬ 𝑦 ) ∈ 𝐵 ) ) |
| 17 |
3 5 16
|
sbcied2 |
⊢ ( 𝑚 = 𝑀 → ( [ ( Base ‘ 𝑚 ) / 𝑏 ] [ ( +g ‘ 𝑚 ) / 𝑜 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 𝑜 𝑦 ) ∈ 𝑏 ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ⚬ 𝑦 ) ∈ 𝐵 ) ) |
| 18 |
|
df-mgm |
⊢ Mgm = { 𝑚 ∣ [ ( Base ‘ 𝑚 ) / 𝑏 ] [ ( +g ‘ 𝑚 ) / 𝑜 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 𝑜 𝑦 ) ∈ 𝑏 } |
| 19 |
17 18
|
elab2g |
⊢ ( 𝑀 ∈ 𝑉 → ( 𝑀 ∈ Mgm ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ⚬ 𝑦 ) ∈ 𝐵 ) ) |