Step |
Hyp |
Ref |
Expression |
1 |
|
ismgmOLD.1 |
⊢ 𝑋 = dom dom 𝐺 |
2 |
|
feq1 |
⊢ ( 𝑔 = 𝐺 → ( 𝑔 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ↔ 𝐺 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ) ) |
3 |
2
|
exbidv |
⊢ ( 𝑔 = 𝐺 → ( ∃ 𝑡 𝑔 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ↔ ∃ 𝑡 𝐺 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ) ) |
4 |
|
df-mgmOLD |
⊢ Magma = { 𝑔 ∣ ∃ 𝑡 𝑔 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 } |
5 |
3 4
|
elab2g |
⊢ ( 𝐺 ∈ 𝐴 → ( 𝐺 ∈ Magma ↔ ∃ 𝑡 𝐺 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ) ) |
6 |
|
f00 |
⊢ ( 𝐺 : ( ∅ × ∅ ) ⟶ ∅ ↔ ( 𝐺 = ∅ ∧ ( ∅ × ∅ ) = ∅ ) ) |
7 |
|
dmeq |
⊢ ( 𝐺 = ∅ → dom 𝐺 = dom ∅ ) |
8 |
|
dmeq |
⊢ ( dom 𝐺 = dom ∅ → dom dom 𝐺 = dom dom ∅ ) |
9 |
|
dm0 |
⊢ dom ∅ = ∅ |
10 |
9
|
dmeqi |
⊢ dom dom ∅ = dom ∅ |
11 |
10 9
|
eqtri |
⊢ dom dom ∅ = ∅ |
12 |
8 11
|
eqtr2di |
⊢ ( dom 𝐺 = dom ∅ → ∅ = dom dom 𝐺 ) |
13 |
7 12
|
syl |
⊢ ( 𝐺 = ∅ → ∅ = dom dom 𝐺 ) |
14 |
13
|
adantr |
⊢ ( ( 𝐺 = ∅ ∧ ( ∅ × ∅ ) = ∅ ) → ∅ = dom dom 𝐺 ) |
15 |
6 14
|
sylbi |
⊢ ( 𝐺 : ( ∅ × ∅ ) ⟶ ∅ → ∅ = dom dom 𝐺 ) |
16 |
|
xpeq12 |
⊢ ( ( 𝑡 = ∅ ∧ 𝑡 = ∅ ) → ( 𝑡 × 𝑡 ) = ( ∅ × ∅ ) ) |
17 |
16
|
anidms |
⊢ ( 𝑡 = ∅ → ( 𝑡 × 𝑡 ) = ( ∅ × ∅ ) ) |
18 |
|
feq23 |
⊢ ( ( ( 𝑡 × 𝑡 ) = ( ∅ × ∅ ) ∧ 𝑡 = ∅ ) → ( 𝐺 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ↔ 𝐺 : ( ∅ × ∅ ) ⟶ ∅ ) ) |
19 |
17 18
|
mpancom |
⊢ ( 𝑡 = ∅ → ( 𝐺 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ↔ 𝐺 : ( ∅ × ∅ ) ⟶ ∅ ) ) |
20 |
|
eqeq1 |
⊢ ( 𝑡 = ∅ → ( 𝑡 = dom dom 𝐺 ↔ ∅ = dom dom 𝐺 ) ) |
21 |
19 20
|
imbi12d |
⊢ ( 𝑡 = ∅ → ( ( 𝐺 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 → 𝑡 = dom dom 𝐺 ) ↔ ( 𝐺 : ( ∅ × ∅ ) ⟶ ∅ → ∅ = dom dom 𝐺 ) ) ) |
22 |
15 21
|
mpbiri |
⊢ ( 𝑡 = ∅ → ( 𝐺 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 → 𝑡 = dom dom 𝐺 ) ) |
23 |
|
fdm |
⊢ ( 𝐺 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 → dom 𝐺 = ( 𝑡 × 𝑡 ) ) |
24 |
|
dmeq |
⊢ ( dom 𝐺 = ( 𝑡 × 𝑡 ) → dom dom 𝐺 = dom ( 𝑡 × 𝑡 ) ) |
25 |
|
df-ne |
⊢ ( 𝑡 ≠ ∅ ↔ ¬ 𝑡 = ∅ ) |
26 |
|
dmxp |
⊢ ( 𝑡 ≠ ∅ → dom ( 𝑡 × 𝑡 ) = 𝑡 ) |
27 |
25 26
|
sylbir |
⊢ ( ¬ 𝑡 = ∅ → dom ( 𝑡 × 𝑡 ) = 𝑡 ) |
28 |
27
|
eqeq1d |
⊢ ( ¬ 𝑡 = ∅ → ( dom ( 𝑡 × 𝑡 ) = dom dom 𝐺 ↔ 𝑡 = dom dom 𝐺 ) ) |
29 |
28
|
biimpcd |
⊢ ( dom ( 𝑡 × 𝑡 ) = dom dom 𝐺 → ( ¬ 𝑡 = ∅ → 𝑡 = dom dom 𝐺 ) ) |
30 |
29
|
eqcoms |
⊢ ( dom dom 𝐺 = dom ( 𝑡 × 𝑡 ) → ( ¬ 𝑡 = ∅ → 𝑡 = dom dom 𝐺 ) ) |
31 |
23 24 30
|
3syl |
⊢ ( 𝐺 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 → ( ¬ 𝑡 = ∅ → 𝑡 = dom dom 𝐺 ) ) |
32 |
31
|
com12 |
⊢ ( ¬ 𝑡 = ∅ → ( 𝐺 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 → 𝑡 = dom dom 𝐺 ) ) |
33 |
22 32
|
pm2.61i |
⊢ ( 𝐺 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 → 𝑡 = dom dom 𝐺 ) |
34 |
33
|
pm4.71ri |
⊢ ( 𝐺 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ↔ ( 𝑡 = dom dom 𝐺 ∧ 𝐺 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ) ) |
35 |
34
|
exbii |
⊢ ( ∃ 𝑡 𝐺 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ↔ ∃ 𝑡 ( 𝑡 = dom dom 𝐺 ∧ 𝐺 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ) ) |
36 |
5 35
|
bitrdi |
⊢ ( 𝐺 ∈ 𝐴 → ( 𝐺 ∈ Magma ↔ ∃ 𝑡 ( 𝑡 = dom dom 𝐺 ∧ 𝐺 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ) ) ) |
37 |
|
dmexg |
⊢ ( 𝐺 ∈ 𝐴 → dom 𝐺 ∈ V ) |
38 |
|
dmexg |
⊢ ( dom 𝐺 ∈ V → dom dom 𝐺 ∈ V ) |
39 |
|
xpeq12 |
⊢ ( ( 𝑡 = dom dom 𝐺 ∧ 𝑡 = dom dom 𝐺 ) → ( 𝑡 × 𝑡 ) = ( dom dom 𝐺 × dom dom 𝐺 ) ) |
40 |
39
|
anidms |
⊢ ( 𝑡 = dom dom 𝐺 → ( 𝑡 × 𝑡 ) = ( dom dom 𝐺 × dom dom 𝐺 ) ) |
41 |
|
feq23 |
⊢ ( ( ( 𝑡 × 𝑡 ) = ( dom dom 𝐺 × dom dom 𝐺 ) ∧ 𝑡 = dom dom 𝐺 ) → ( 𝐺 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ↔ 𝐺 : ( dom dom 𝐺 × dom dom 𝐺 ) ⟶ dom dom 𝐺 ) ) |
42 |
40 41
|
mpancom |
⊢ ( 𝑡 = dom dom 𝐺 → ( 𝐺 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ↔ 𝐺 : ( dom dom 𝐺 × dom dom 𝐺 ) ⟶ dom dom 𝐺 ) ) |
43 |
1
|
eqcomi |
⊢ dom dom 𝐺 = 𝑋 |
44 |
43 43
|
xpeq12i |
⊢ ( dom dom 𝐺 × dom dom 𝐺 ) = ( 𝑋 × 𝑋 ) |
45 |
44 43
|
feq23i |
⊢ ( 𝐺 : ( dom dom 𝐺 × dom dom 𝐺 ) ⟶ dom dom 𝐺 ↔ 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) |
46 |
42 45
|
bitrdi |
⊢ ( 𝑡 = dom dom 𝐺 → ( 𝐺 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ↔ 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) ) |
47 |
46
|
ceqsexgv |
⊢ ( dom dom 𝐺 ∈ V → ( ∃ 𝑡 ( 𝑡 = dom dom 𝐺 ∧ 𝐺 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ) ↔ 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) ) |
48 |
37 38 47
|
3syl |
⊢ ( 𝐺 ∈ 𝐴 → ( ∃ 𝑡 ( 𝑡 = dom dom 𝐺 ∧ 𝐺 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ) ↔ 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) ) |
49 |
36 48
|
bitrd |
⊢ ( 𝐺 ∈ 𝐴 → ( 𝐺 ∈ Magma ↔ 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) ) |