| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ismgmd.b | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ 𝐺 ) ) | 
						
							| 2 |  | ismgmd.0 | ⊢ ( 𝜑  →  𝐺  ∈  𝑉 ) | 
						
							| 3 |  | ismgmd.p | ⊢ ( 𝜑  →   +   =  ( +g ‘ 𝐺 ) ) | 
						
							| 4 |  | ismgmd.c | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  ( 𝑥  +  𝑦 )  ∈  𝐵 ) | 
						
							| 5 | 4 | 3expb | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥  +  𝑦 )  ∈  𝐵 ) | 
						
							| 6 | 5 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑥  +  𝑦 )  ∈  𝐵 ) | 
						
							| 7 | 3 | oveqd | ⊢ ( 𝜑  →  ( 𝑥  +  𝑦 )  =  ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) | 
						
							| 8 | 7 1 | eleq12d | ⊢ ( 𝜑  →  ( ( 𝑥  +  𝑦 )  ∈  𝐵  ↔  ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  ∈  ( Base ‘ 𝐺 ) ) ) | 
						
							| 9 | 1 8 | raleqbidv | ⊢ ( 𝜑  →  ( ∀ 𝑦  ∈  𝐵 ( 𝑥  +  𝑦 )  ∈  𝐵  ↔  ∀ 𝑦  ∈  ( Base ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  ∈  ( Base ‘ 𝐺 ) ) ) | 
						
							| 10 | 1 9 | raleqbidv | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑥  +  𝑦 )  ∈  𝐵  ↔  ∀ 𝑥  ∈  ( Base ‘ 𝐺 ) ∀ 𝑦  ∈  ( Base ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  ∈  ( Base ‘ 𝐺 ) ) ) | 
						
							| 11 | 6 10 | mpbid | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ( Base ‘ 𝐺 ) ∀ 𝑦  ∈  ( Base ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 12 |  | eqid | ⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 ) | 
						
							| 13 |  | eqid | ⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 ) | 
						
							| 14 | 12 13 | ismgm | ⊢ ( 𝐺  ∈  𝑉  →  ( 𝐺  ∈  Mgm  ↔  ∀ 𝑥  ∈  ( Base ‘ 𝐺 ) ∀ 𝑦  ∈  ( Base ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  ∈  ( Base ‘ 𝐺 ) ) ) | 
						
							| 15 | 2 14 | syl | ⊢ ( 𝜑  →  ( 𝐺  ∈  Mgm  ↔  ∀ 𝑥  ∈  ( Base ‘ 𝐺 ) ∀ 𝑦  ∈  ( Base ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  ∈  ( Base ‘ 𝐺 ) ) ) | 
						
							| 16 | 11 15 | mpbird | ⊢ ( 𝜑  →  𝐺  ∈  Mgm ) |