Step |
Hyp |
Ref |
Expression |
1 |
|
ismgmid.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
ismgmid.o |
⊢ 0 = ( 0g ‘ 𝐺 ) |
3 |
|
ismgmid.p |
⊢ + = ( +g ‘ 𝐺 ) |
4 |
|
ismgmid2.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝐵 ) |
5 |
|
ismgmid2.l |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑈 + 𝑥 ) = 𝑥 ) |
6 |
|
ismgmid2.r |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 + 𝑈 ) = 𝑥 ) |
7 |
5 6
|
jca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑈 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑈 ) = 𝑥 ) ) |
8 |
7
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ( ( 𝑈 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑈 ) = 𝑥 ) ) |
9 |
|
oveq1 |
⊢ ( 𝑒 = 𝑈 → ( 𝑒 + 𝑥 ) = ( 𝑈 + 𝑥 ) ) |
10 |
9
|
eqeq1d |
⊢ ( 𝑒 = 𝑈 → ( ( 𝑒 + 𝑥 ) = 𝑥 ↔ ( 𝑈 + 𝑥 ) = 𝑥 ) ) |
11 |
10
|
ovanraleqv |
⊢ ( 𝑒 = 𝑈 → ( ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑒 ) = 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐵 ( ( 𝑈 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑈 ) = 𝑥 ) ) ) |
12 |
11
|
rspcev |
⊢ ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑈 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑈 ) = 𝑥 ) ) → ∃ 𝑒 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑒 ) = 𝑥 ) ) |
13 |
4 8 12
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑒 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑒 ) = 𝑥 ) ) |
14 |
1 2 3 13
|
ismgmid |
⊢ ( 𝜑 → ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑈 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑈 ) = 𝑥 ) ) ↔ 0 = 𝑈 ) ) |
15 |
4 8 14
|
mpbi2and |
⊢ ( 𝜑 → 0 = 𝑈 ) |
16 |
15
|
eqcomd |
⊢ ( 𝜑 → 𝑈 = 0 ) |