| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ismgmid.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | ismgmid.o | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 3 |  | ismgmid.p | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 4 |  | ismgmid2.u | ⊢ ( 𝜑  →  𝑈  ∈  𝐵 ) | 
						
							| 5 |  | ismgmid2.l | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( 𝑈  +  𝑥 )  =  𝑥 ) | 
						
							| 6 |  | ismgmid2.r | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( 𝑥  +  𝑈 )  =  𝑥 ) | 
						
							| 7 | 5 6 | jca | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( ( 𝑈  +  𝑥 )  =  𝑥  ∧  ( 𝑥  +  𝑈 )  =  𝑥 ) ) | 
						
							| 8 | 7 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐵 ( ( 𝑈  +  𝑥 )  =  𝑥  ∧  ( 𝑥  +  𝑈 )  =  𝑥 ) ) | 
						
							| 9 |  | oveq1 | ⊢ ( 𝑒  =  𝑈  →  ( 𝑒  +  𝑥 )  =  ( 𝑈  +  𝑥 ) ) | 
						
							| 10 | 9 | eqeq1d | ⊢ ( 𝑒  =  𝑈  →  ( ( 𝑒  +  𝑥 )  =  𝑥  ↔  ( 𝑈  +  𝑥 )  =  𝑥 ) ) | 
						
							| 11 | 10 | ovanraleqv | ⊢ ( 𝑒  =  𝑈  →  ( ∀ 𝑥  ∈  𝐵 ( ( 𝑒  +  𝑥 )  =  𝑥  ∧  ( 𝑥  +  𝑒 )  =  𝑥 )  ↔  ∀ 𝑥  ∈  𝐵 ( ( 𝑈  +  𝑥 )  =  𝑥  ∧  ( 𝑥  +  𝑈 )  =  𝑥 ) ) ) | 
						
							| 12 | 11 | rspcev | ⊢ ( ( 𝑈  ∈  𝐵  ∧  ∀ 𝑥  ∈  𝐵 ( ( 𝑈  +  𝑥 )  =  𝑥  ∧  ( 𝑥  +  𝑈 )  =  𝑥 ) )  →  ∃ 𝑒  ∈  𝐵 ∀ 𝑥  ∈  𝐵 ( ( 𝑒  +  𝑥 )  =  𝑥  ∧  ( 𝑥  +  𝑒 )  =  𝑥 ) ) | 
						
							| 13 | 4 8 12 | syl2anc | ⊢ ( 𝜑  →  ∃ 𝑒  ∈  𝐵 ∀ 𝑥  ∈  𝐵 ( ( 𝑒  +  𝑥 )  =  𝑥  ∧  ( 𝑥  +  𝑒 )  =  𝑥 ) ) | 
						
							| 14 | 1 2 3 13 | ismgmid | ⊢ ( 𝜑  →  ( ( 𝑈  ∈  𝐵  ∧  ∀ 𝑥  ∈  𝐵 ( ( 𝑈  +  𝑥 )  =  𝑥  ∧  ( 𝑥  +  𝑈 )  =  𝑥 ) )  ↔   0   =  𝑈 ) ) | 
						
							| 15 | 4 8 14 | mpbi2and | ⊢ ( 𝜑  →   0   =  𝑈 ) | 
						
							| 16 | 15 | eqcomd | ⊢ ( 𝜑  →  𝑈  =   0  ) |