Metamath Proof Explorer


Theorem ismgmn0

Description: The predicate "is a magma" for a structure with a nonempty base set. (Contributed by AV, 29-Jan-2020)

Ref Expression
Hypotheses ismgmn0.b 𝐵 = ( Base ‘ 𝑀 )
ismgmn0.o = ( +g𝑀 )
Assertion ismgmn0 ( 𝐴𝐵 → ( 𝑀 ∈ Mgm ↔ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 𝑦 ) ∈ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 ismgmn0.b 𝐵 = ( Base ‘ 𝑀 )
2 ismgmn0.o = ( +g𝑀 )
3 1 eleq2i ( 𝐴𝐵𝐴 ∈ ( Base ‘ 𝑀 ) )
4 3 biimpi ( 𝐴𝐵𝐴 ∈ ( Base ‘ 𝑀 ) )
5 4 elfvexd ( 𝐴𝐵𝑀 ∈ V )
6 1 2 ismgm ( 𝑀 ∈ V → ( 𝑀 ∈ Mgm ↔ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 𝑦 ) ∈ 𝐵 ) )
7 5 6 syl ( 𝐴𝐵 → ( 𝑀 ∈ Mgm ↔ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 𝑦 ) ∈ 𝐵 ) )