Description: The predicate "is a magma" for a structure with a nonempty base set. (Contributed by AV, 29-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ismgmn0.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| ismgmn0.o | ⊢ ⚬ = ( +g ‘ 𝑀 ) | ||
| Assertion | ismgmn0 | ⊢ ( 𝐴 ∈ 𝐵 → ( 𝑀 ∈ Mgm ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ⚬ 𝑦 ) ∈ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismgmn0.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| 2 | ismgmn0.o | ⊢ ⚬ = ( +g ‘ 𝑀 ) | |
| 3 | 1 | eleq2i | ⊢ ( 𝐴 ∈ 𝐵 ↔ 𝐴 ∈ ( Base ‘ 𝑀 ) ) |
| 4 | 3 | biimpi | ⊢ ( 𝐴 ∈ 𝐵 → 𝐴 ∈ ( Base ‘ 𝑀 ) ) |
| 5 | 4 | elfvexd | ⊢ ( 𝐴 ∈ 𝐵 → 𝑀 ∈ V ) |
| 6 | 1 2 | ismgm | ⊢ ( 𝑀 ∈ V → ( 𝑀 ∈ Mgm ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ⚬ 𝑦 ) ∈ 𝐵 ) ) |
| 7 | 5 6 | syl | ⊢ ( 𝐴 ∈ 𝐵 → ( 𝑀 ∈ Mgm ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ⚬ 𝑦 ) ∈ 𝐵 ) ) |