Step |
Hyp |
Ref |
Expression |
1 |
|
ismhm.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
2 |
|
ismhm.c |
⊢ 𝐶 = ( Base ‘ 𝑇 ) |
3 |
|
ismhm.p |
⊢ + = ( +g ‘ 𝑆 ) |
4 |
|
ismhm.q |
⊢ ⨣ = ( +g ‘ 𝑇 ) |
5 |
|
ismhm.z |
⊢ 0 = ( 0g ‘ 𝑆 ) |
6 |
|
ismhm.y |
⊢ 𝑌 = ( 0g ‘ 𝑇 ) |
7 |
|
df-mhm |
⊢ MndHom = ( 𝑠 ∈ Mnd , 𝑡 ∈ Mnd ↦ { 𝑓 ∈ ( ( Base ‘ 𝑡 ) ↑m ( Base ‘ 𝑠 ) ) ∣ ( ∀ 𝑥 ∈ ( Base ‘ 𝑠 ) ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 0g ‘ 𝑠 ) ) = ( 0g ‘ 𝑡 ) ) } ) |
8 |
7
|
elmpocl |
⊢ ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) → ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ) ) |
9 |
|
fveq2 |
⊢ ( 𝑡 = 𝑇 → ( Base ‘ 𝑡 ) = ( Base ‘ 𝑇 ) ) |
10 |
9 2
|
eqtr4di |
⊢ ( 𝑡 = 𝑇 → ( Base ‘ 𝑡 ) = 𝐶 ) |
11 |
|
fveq2 |
⊢ ( 𝑠 = 𝑆 → ( Base ‘ 𝑠 ) = ( Base ‘ 𝑆 ) ) |
12 |
11 1
|
eqtr4di |
⊢ ( 𝑠 = 𝑆 → ( Base ‘ 𝑠 ) = 𝐵 ) |
13 |
10 12
|
oveqan12rd |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → ( ( Base ‘ 𝑡 ) ↑m ( Base ‘ 𝑠 ) ) = ( 𝐶 ↑m 𝐵 ) ) |
14 |
12
|
adantr |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → ( Base ‘ 𝑠 ) = 𝐵 ) |
15 |
|
fveq2 |
⊢ ( 𝑠 = 𝑆 → ( +g ‘ 𝑠 ) = ( +g ‘ 𝑆 ) ) |
16 |
15 3
|
eqtr4di |
⊢ ( 𝑠 = 𝑆 → ( +g ‘ 𝑠 ) = + ) |
17 |
16
|
oveqd |
⊢ ( 𝑠 = 𝑆 → ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) = ( 𝑥 + 𝑦 ) ) |
18 |
17
|
fveq2d |
⊢ ( 𝑠 = 𝑆 → ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) = ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) ) |
19 |
|
fveq2 |
⊢ ( 𝑡 = 𝑇 → ( +g ‘ 𝑡 ) = ( +g ‘ 𝑇 ) ) |
20 |
19 4
|
eqtr4di |
⊢ ( 𝑡 = 𝑇 → ( +g ‘ 𝑡 ) = ⨣ ) |
21 |
20
|
oveqd |
⊢ ( 𝑡 = 𝑇 → ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ⨣ ( 𝑓 ‘ 𝑦 ) ) ) |
22 |
18 21
|
eqeqan12d |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ⨣ ( 𝑓 ‘ 𝑦 ) ) ) ) |
23 |
14 22
|
raleqbidv |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ⨣ ( 𝑓 ‘ 𝑦 ) ) ) ) |
24 |
14 23
|
raleqbidv |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝑠 ) ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ⨣ ( 𝑓 ‘ 𝑦 ) ) ) ) |
25 |
|
fveq2 |
⊢ ( 𝑠 = 𝑆 → ( 0g ‘ 𝑠 ) = ( 0g ‘ 𝑆 ) ) |
26 |
25 5
|
eqtr4di |
⊢ ( 𝑠 = 𝑆 → ( 0g ‘ 𝑠 ) = 0 ) |
27 |
26
|
fveq2d |
⊢ ( 𝑠 = 𝑆 → ( 𝑓 ‘ ( 0g ‘ 𝑠 ) ) = ( 𝑓 ‘ 0 ) ) |
28 |
|
fveq2 |
⊢ ( 𝑡 = 𝑇 → ( 0g ‘ 𝑡 ) = ( 0g ‘ 𝑇 ) ) |
29 |
28 6
|
eqtr4di |
⊢ ( 𝑡 = 𝑇 → ( 0g ‘ 𝑡 ) = 𝑌 ) |
30 |
27 29
|
eqeqan12d |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → ( ( 𝑓 ‘ ( 0g ‘ 𝑠 ) ) = ( 0g ‘ 𝑡 ) ↔ ( 𝑓 ‘ 0 ) = 𝑌 ) ) |
31 |
24 30
|
anbi12d |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → ( ( ∀ 𝑥 ∈ ( Base ‘ 𝑠 ) ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 0g ‘ 𝑠 ) ) = ( 0g ‘ 𝑡 ) ) ↔ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ⨣ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ 0 ) = 𝑌 ) ) ) |
32 |
13 31
|
rabeqbidv |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → { 𝑓 ∈ ( ( Base ‘ 𝑡 ) ↑m ( Base ‘ 𝑠 ) ) ∣ ( ∀ 𝑥 ∈ ( Base ‘ 𝑠 ) ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 0g ‘ 𝑠 ) ) = ( 0g ‘ 𝑡 ) ) } = { 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∣ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ⨣ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ 0 ) = 𝑌 ) } ) |
33 |
|
ovex |
⊢ ( 𝐶 ↑m 𝐵 ) ∈ V |
34 |
33
|
rabex |
⊢ { 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∣ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ⨣ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ 0 ) = 𝑌 ) } ∈ V |
35 |
32 7 34
|
ovmpoa |
⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ) → ( 𝑆 MndHom 𝑇 ) = { 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∣ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ⨣ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ 0 ) = 𝑌 ) } ) |
36 |
35
|
eleq2d |
⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ) → ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ↔ 𝐹 ∈ { 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∣ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ⨣ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ 0 ) = 𝑌 ) } ) ) |
37 |
2
|
fvexi |
⊢ 𝐶 ∈ V |
38 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
39 |
37 38
|
elmap |
⊢ ( 𝐹 ∈ ( 𝐶 ↑m 𝐵 ) ↔ 𝐹 : 𝐵 ⟶ 𝐶 ) |
40 |
39
|
anbi1i |
⊢ ( ( 𝐹 ∈ ( 𝐶 ↑m 𝐵 ) ∧ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ) ↔ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ) ) |
41 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ) |
42 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
43 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
44 |
42 43
|
oveq12d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ 𝑥 ) ⨣ ( 𝑓 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) |
45 |
41 44
|
eqeq12d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ⨣ ( 𝑓 ‘ 𝑦 ) ) ↔ ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) ) |
46 |
45
|
2ralbidv |
⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ⨣ ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) ) |
47 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 0 ) = ( 𝐹 ‘ 0 ) ) |
48 |
47
|
eqeq1d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ 0 ) = 𝑌 ↔ ( 𝐹 ‘ 0 ) = 𝑌 ) ) |
49 |
46 48
|
anbi12d |
⊢ ( 𝑓 = 𝐹 → ( ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ⨣ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ 0 ) = 𝑌 ) ↔ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ) ) |
50 |
49
|
elrab |
⊢ ( 𝐹 ∈ { 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∣ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ⨣ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ 0 ) = 𝑌 ) } ↔ ( 𝐹 ∈ ( 𝐶 ↑m 𝐵 ) ∧ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ) ) |
51 |
|
3anass |
⊢ ( ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ↔ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ) ) |
52 |
40 50 51
|
3bitr4i |
⊢ ( 𝐹 ∈ { 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∣ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ⨣ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ 0 ) = 𝑌 ) } ↔ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ) |
53 |
36 52
|
bitrdi |
⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ) → ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ↔ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ) ) |
54 |
8 53
|
biadanii |
⊢ ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ↔ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ) ) |