| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ismhm.b | ⊢ 𝐵  =  ( Base ‘ 𝑆 ) | 
						
							| 2 |  | ismhm.c | ⊢ 𝐶  =  ( Base ‘ 𝑇 ) | 
						
							| 3 |  | ismhm.p | ⊢  +   =  ( +g ‘ 𝑆 ) | 
						
							| 4 |  | ismhm.q | ⊢  ⨣   =  ( +g ‘ 𝑇 ) | 
						
							| 5 |  | ismhm.z | ⊢  0   =  ( 0g ‘ 𝑆 ) | 
						
							| 6 |  | ismhm.y | ⊢ 𝑌  =  ( 0g ‘ 𝑇 ) | 
						
							| 7 |  | df-mhm | ⊢  MndHom   =  ( 𝑠  ∈  Mnd ,  𝑡  ∈  Mnd  ↦  { 𝑓  ∈  ( ( Base ‘ 𝑡 )  ↑m  ( Base ‘ 𝑠 ) )  ∣  ( ∀ 𝑥  ∈  ( Base ‘ 𝑠 ) ∀ 𝑦  ∈  ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 0g ‘ 𝑠 ) )  =  ( 0g ‘ 𝑡 ) ) } ) | 
						
							| 8 | 7 | elmpocl | ⊢ ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  →  ( 𝑆  ∈  Mnd  ∧  𝑇  ∈  Mnd ) ) | 
						
							| 9 |  | fveq2 | ⊢ ( 𝑡  =  𝑇  →  ( Base ‘ 𝑡 )  =  ( Base ‘ 𝑇 ) ) | 
						
							| 10 | 9 2 | eqtr4di | ⊢ ( 𝑡  =  𝑇  →  ( Base ‘ 𝑡 )  =  𝐶 ) | 
						
							| 11 |  | fveq2 | ⊢ ( 𝑠  =  𝑆  →  ( Base ‘ 𝑠 )  =  ( Base ‘ 𝑆 ) ) | 
						
							| 12 | 11 1 | eqtr4di | ⊢ ( 𝑠  =  𝑆  →  ( Base ‘ 𝑠 )  =  𝐵 ) | 
						
							| 13 | 10 12 | oveqan12rd | ⊢ ( ( 𝑠  =  𝑆  ∧  𝑡  =  𝑇 )  →  ( ( Base ‘ 𝑡 )  ↑m  ( Base ‘ 𝑠 ) )  =  ( 𝐶  ↑m  𝐵 ) ) | 
						
							| 14 | 12 | adantr | ⊢ ( ( 𝑠  =  𝑆  ∧  𝑡  =  𝑇 )  →  ( Base ‘ 𝑠 )  =  𝐵 ) | 
						
							| 15 |  | fveq2 | ⊢ ( 𝑠  =  𝑆  →  ( +g ‘ 𝑠 )  =  ( +g ‘ 𝑆 ) ) | 
						
							| 16 | 15 3 | eqtr4di | ⊢ ( 𝑠  =  𝑆  →  ( +g ‘ 𝑠 )  =   +  ) | 
						
							| 17 | 16 | oveqd | ⊢ ( 𝑠  =  𝑆  →  ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 )  =  ( 𝑥  +  𝑦 ) ) | 
						
							| 18 | 17 | fveq2d | ⊢ ( 𝑠  =  𝑆  →  ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) )  =  ( 𝑓 ‘ ( 𝑥  +  𝑦 ) ) ) | 
						
							| 19 |  | fveq2 | ⊢ ( 𝑡  =  𝑇  →  ( +g ‘ 𝑡 )  =  ( +g ‘ 𝑇 ) ) | 
						
							| 20 | 19 4 | eqtr4di | ⊢ ( 𝑡  =  𝑇  →  ( +g ‘ 𝑡 )  =   ⨣  ) | 
						
							| 21 | 20 | oveqd | ⊢ ( 𝑡  =  𝑇  →  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  ⨣  ( 𝑓 ‘ 𝑦 ) ) ) | 
						
							| 22 | 18 21 | eqeqan12d | ⊢ ( ( 𝑠  =  𝑆  ∧  𝑡  =  𝑇 )  →  ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) )  ↔  ( 𝑓 ‘ ( 𝑥  +  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  ⨣  ( 𝑓 ‘ 𝑦 ) ) ) ) | 
						
							| 23 | 14 22 | raleqbidv | ⊢ ( ( 𝑠  =  𝑆  ∧  𝑡  =  𝑇 )  →  ( ∀ 𝑦  ∈  ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) )  ↔  ∀ 𝑦  ∈  𝐵 ( 𝑓 ‘ ( 𝑥  +  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  ⨣  ( 𝑓 ‘ 𝑦 ) ) ) ) | 
						
							| 24 | 14 23 | raleqbidv | ⊢ ( ( 𝑠  =  𝑆  ∧  𝑡  =  𝑇 )  →  ( ∀ 𝑥  ∈  ( Base ‘ 𝑠 ) ∀ 𝑦  ∈  ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) )  ↔  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑓 ‘ ( 𝑥  +  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  ⨣  ( 𝑓 ‘ 𝑦 ) ) ) ) | 
						
							| 25 |  | fveq2 | ⊢ ( 𝑠  =  𝑆  →  ( 0g ‘ 𝑠 )  =  ( 0g ‘ 𝑆 ) ) | 
						
							| 26 | 25 5 | eqtr4di | ⊢ ( 𝑠  =  𝑆  →  ( 0g ‘ 𝑠 )  =   0  ) | 
						
							| 27 | 26 | fveq2d | ⊢ ( 𝑠  =  𝑆  →  ( 𝑓 ‘ ( 0g ‘ 𝑠 ) )  =  ( 𝑓 ‘  0  ) ) | 
						
							| 28 |  | fveq2 | ⊢ ( 𝑡  =  𝑇  →  ( 0g ‘ 𝑡 )  =  ( 0g ‘ 𝑇 ) ) | 
						
							| 29 | 28 6 | eqtr4di | ⊢ ( 𝑡  =  𝑇  →  ( 0g ‘ 𝑡 )  =  𝑌 ) | 
						
							| 30 | 27 29 | eqeqan12d | ⊢ ( ( 𝑠  =  𝑆  ∧  𝑡  =  𝑇 )  →  ( ( 𝑓 ‘ ( 0g ‘ 𝑠 ) )  =  ( 0g ‘ 𝑡 )  ↔  ( 𝑓 ‘  0  )  =  𝑌 ) ) | 
						
							| 31 | 24 30 | anbi12d | ⊢ ( ( 𝑠  =  𝑆  ∧  𝑡  =  𝑇 )  →  ( ( ∀ 𝑥  ∈  ( Base ‘ 𝑠 ) ∀ 𝑦  ∈  ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 0g ‘ 𝑠 ) )  =  ( 0g ‘ 𝑡 ) )  ↔  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑓 ‘ ( 𝑥  +  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  ⨣  ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘  0  )  =  𝑌 ) ) ) | 
						
							| 32 | 13 31 | rabeqbidv | ⊢ ( ( 𝑠  =  𝑆  ∧  𝑡  =  𝑇 )  →  { 𝑓  ∈  ( ( Base ‘ 𝑡 )  ↑m  ( Base ‘ 𝑠 ) )  ∣  ( ∀ 𝑥  ∈  ( Base ‘ 𝑠 ) ∀ 𝑦  ∈  ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 0g ‘ 𝑠 ) )  =  ( 0g ‘ 𝑡 ) ) }  =  { 𝑓  ∈  ( 𝐶  ↑m  𝐵 )  ∣  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑓 ‘ ( 𝑥  +  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  ⨣  ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘  0  )  =  𝑌 ) } ) | 
						
							| 33 |  | ovex | ⊢ ( 𝐶  ↑m  𝐵 )  ∈  V | 
						
							| 34 | 33 | rabex | ⊢ { 𝑓  ∈  ( 𝐶  ↑m  𝐵 )  ∣  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑓 ‘ ( 𝑥  +  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  ⨣  ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘  0  )  =  𝑌 ) }  ∈  V | 
						
							| 35 | 32 7 34 | ovmpoa | ⊢ ( ( 𝑆  ∈  Mnd  ∧  𝑇  ∈  Mnd )  →  ( 𝑆  MndHom  𝑇 )  =  { 𝑓  ∈  ( 𝐶  ↑m  𝐵 )  ∣  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑓 ‘ ( 𝑥  +  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  ⨣  ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘  0  )  =  𝑌 ) } ) | 
						
							| 36 | 35 | eleq2d | ⊢ ( ( 𝑆  ∈  Mnd  ∧  𝑇  ∈  Mnd )  →  ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ↔  𝐹  ∈  { 𝑓  ∈  ( 𝐶  ↑m  𝐵 )  ∣  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑓 ‘ ( 𝑥  +  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  ⨣  ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘  0  )  =  𝑌 ) } ) ) | 
						
							| 37 | 2 | fvexi | ⊢ 𝐶  ∈  V | 
						
							| 38 | 1 | fvexi | ⊢ 𝐵  ∈  V | 
						
							| 39 | 37 38 | elmap | ⊢ ( 𝐹  ∈  ( 𝐶  ↑m  𝐵 )  ↔  𝐹 : 𝐵 ⟶ 𝐶 ) | 
						
							| 40 | 39 | anbi1i | ⊢ ( ( 𝐹  ∈  ( 𝐶  ↑m  𝐵 )  ∧  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝐹 ‘ ( 𝑥  +  𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ⨣  ( 𝐹 ‘ 𝑦 ) )  ∧  ( 𝐹 ‘  0  )  =  𝑌 ) )  ↔  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝐹 ‘ ( 𝑥  +  𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ⨣  ( 𝐹 ‘ 𝑦 ) )  ∧  ( 𝐹 ‘  0  )  =  𝑌 ) ) ) | 
						
							| 41 |  | fveq1 | ⊢ ( 𝑓  =  𝐹  →  ( 𝑓 ‘ ( 𝑥  +  𝑦 ) )  =  ( 𝐹 ‘ ( 𝑥  +  𝑦 ) ) ) | 
						
							| 42 |  | fveq1 | ⊢ ( 𝑓  =  𝐹  →  ( 𝑓 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 43 |  | fveq1 | ⊢ ( 𝑓  =  𝐹  →  ( 𝑓 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 44 | 42 43 | oveq12d | ⊢ ( 𝑓  =  𝐹  →  ( ( 𝑓 ‘ 𝑥 )  ⨣  ( 𝑓 ‘ 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ⨣  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 45 | 41 44 | eqeq12d | ⊢ ( 𝑓  =  𝐹  →  ( ( 𝑓 ‘ ( 𝑥  +  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  ⨣  ( 𝑓 ‘ 𝑦 ) )  ↔  ( 𝐹 ‘ ( 𝑥  +  𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ⨣  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 46 | 45 | 2ralbidv | ⊢ ( 𝑓  =  𝐹  →  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑓 ‘ ( 𝑥  +  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  ⨣  ( 𝑓 ‘ 𝑦 ) )  ↔  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝐹 ‘ ( 𝑥  +  𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ⨣  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 47 |  | fveq1 | ⊢ ( 𝑓  =  𝐹  →  ( 𝑓 ‘  0  )  =  ( 𝐹 ‘  0  ) ) | 
						
							| 48 | 47 | eqeq1d | ⊢ ( 𝑓  =  𝐹  →  ( ( 𝑓 ‘  0  )  =  𝑌  ↔  ( 𝐹 ‘  0  )  =  𝑌 ) ) | 
						
							| 49 | 46 48 | anbi12d | ⊢ ( 𝑓  =  𝐹  →  ( ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑓 ‘ ( 𝑥  +  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  ⨣  ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘  0  )  =  𝑌 )  ↔  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝐹 ‘ ( 𝑥  +  𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ⨣  ( 𝐹 ‘ 𝑦 ) )  ∧  ( 𝐹 ‘  0  )  =  𝑌 ) ) ) | 
						
							| 50 | 49 | elrab | ⊢ ( 𝐹  ∈  { 𝑓  ∈  ( 𝐶  ↑m  𝐵 )  ∣  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑓 ‘ ( 𝑥  +  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  ⨣  ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘  0  )  =  𝑌 ) }  ↔  ( 𝐹  ∈  ( 𝐶  ↑m  𝐵 )  ∧  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝐹 ‘ ( 𝑥  +  𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ⨣  ( 𝐹 ‘ 𝑦 ) )  ∧  ( 𝐹 ‘  0  )  =  𝑌 ) ) ) | 
						
							| 51 |  | 3anass | ⊢ ( ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝐹 ‘ ( 𝑥  +  𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ⨣  ( 𝐹 ‘ 𝑦 ) )  ∧  ( 𝐹 ‘  0  )  =  𝑌 )  ↔  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝐹 ‘ ( 𝑥  +  𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ⨣  ( 𝐹 ‘ 𝑦 ) )  ∧  ( 𝐹 ‘  0  )  =  𝑌 ) ) ) | 
						
							| 52 | 40 50 51 | 3bitr4i | ⊢ ( 𝐹  ∈  { 𝑓  ∈  ( 𝐶  ↑m  𝐵 )  ∣  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑓 ‘ ( 𝑥  +  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  ⨣  ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘  0  )  =  𝑌 ) }  ↔  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝐹 ‘ ( 𝑥  +  𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ⨣  ( 𝐹 ‘ 𝑦 ) )  ∧  ( 𝐹 ‘  0  )  =  𝑌 ) ) | 
						
							| 53 | 36 52 | bitrdi | ⊢ ( ( 𝑆  ∈  Mnd  ∧  𝑇  ∈  Mnd )  →  ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ↔  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝐹 ‘ ( 𝑥  +  𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ⨣  ( 𝐹 ‘ 𝑦 ) )  ∧  ( 𝐹 ‘  0  )  =  𝑌 ) ) ) | 
						
							| 54 | 8 53 | biadanii | ⊢ ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ↔  ( ( 𝑆  ∈  Mnd  ∧  𝑇  ∈  Mnd )  ∧  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝐹 ‘ ( 𝑥  +  𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ⨣  ( 𝐹 ‘ 𝑦 ) )  ∧  ( 𝐹 ‘  0  )  =  𝑌 ) ) ) |