| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ismhmd.b | ⊢ 𝐵  =  ( Base ‘ 𝑆 ) | 
						
							| 2 |  | ismhmd.c | ⊢ 𝐶  =  ( Base ‘ 𝑇 ) | 
						
							| 3 |  | ismhmd.p | ⊢  +   =  ( +g ‘ 𝑆 ) | 
						
							| 4 |  | ismhmd.q | ⊢  ⨣   =  ( +g ‘ 𝑇 ) | 
						
							| 5 |  | ismhmd.0 | ⊢  0   =  ( 0g ‘ 𝑆 ) | 
						
							| 6 |  | ismhmd.z | ⊢ 𝑍  =  ( 0g ‘ 𝑇 ) | 
						
							| 7 |  | ismhmd.s | ⊢ ( 𝜑  →  𝑆  ∈  Mnd ) | 
						
							| 8 |  | ismhmd.t | ⊢ ( 𝜑  →  𝑇  ∈  Mnd ) | 
						
							| 9 |  | ismhmd.f | ⊢ ( 𝜑  →  𝐹 : 𝐵 ⟶ 𝐶 ) | 
						
							| 10 |  | ismhmd.a | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝐹 ‘ ( 𝑥  +  𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ⨣  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 11 |  | ismhmd.h | ⊢ ( 𝜑  →  ( 𝐹 ‘  0  )  =  𝑍 ) | 
						
							| 12 | 10 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝐹 ‘ ( 𝑥  +  𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ⨣  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 13 | 9 12 11 | 3jca | ⊢ ( 𝜑  →  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝐹 ‘ ( 𝑥  +  𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ⨣  ( 𝐹 ‘ 𝑦 ) )  ∧  ( 𝐹 ‘  0  )  =  𝑍 ) ) | 
						
							| 14 | 1 2 3 4 5 6 | ismhm | ⊢ ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ↔  ( ( 𝑆  ∈  Mnd  ∧  𝑇  ∈  Mnd )  ∧  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝐹 ‘ ( 𝑥  +  𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ⨣  ( 𝐹 ‘ 𝑦 ) )  ∧  ( 𝐹 ‘  0  )  =  𝑍 ) ) ) | 
						
							| 15 | 7 8 13 14 | syl21anbrc | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝑆  MndHom  𝑇 ) ) |