Database
BASIC ALGEBRAIC STRUCTURES
Monoids
Definition and basic properties of monoids
ismnd
Metamath Proof Explorer
Description: The predicate "is a monoid". This is the defining theorem of a monoid
by showing that a set is a monoid if and only if it is a set equipped
with a closed, everywhere defined internal operation (so, a magma, see
mndcl ), whose operation is associative (so, a semigroup, see also
mndass ) and has a two-sided neutral element (see mndid ).
(Contributed by Mario Carneiro , 6-Jan-2015) (Revised by AV , 1-Feb-2020)
Ref
Expression
Hypotheses
ismnd.b
⊢ 𝐵 = ( Base ‘ 𝐺 )
ismnd.p
⊢ + = ( +g ‘ 𝐺 )
Assertion
ismnd
⊢ ( 𝐺 ∈ Mnd ↔ ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑎 + 𝑏 ) ∈ 𝐵 ∧ ∀ 𝑐 ∈ 𝐵 ( ( 𝑎 + 𝑏 ) + 𝑐 ) = ( 𝑎 + ( 𝑏 + 𝑐 ) ) ) ∧ ∃ 𝑒 ∈ 𝐵 ∀ 𝑎 ∈ 𝐵 ( ( 𝑒 + 𝑎 ) = 𝑎 ∧ ( 𝑎 + 𝑒 ) = 𝑎 ) ) )
Proof
Step
Hyp
Ref
Expression
1
ismnd.b
⊢ 𝐵 = ( Base ‘ 𝐺 )
2
ismnd.p
⊢ + = ( +g ‘ 𝐺 )
3
1 2
ismnddef
⊢ ( 𝐺 ∈ Mnd ↔ ( 𝐺 ∈ Smgrp ∧ ∃ 𝑒 ∈ 𝐵 ∀ 𝑎 ∈ 𝐵 ( ( 𝑒 + 𝑎 ) = 𝑎 ∧ ( 𝑎 + 𝑒 ) = 𝑎 ) ) )
4
rexn0
⊢ ( ∃ 𝑒 ∈ 𝐵 ∀ 𝑎 ∈ 𝐵 ( ( 𝑒 + 𝑎 ) = 𝑎 ∧ ( 𝑎 + 𝑒 ) = 𝑎 ) → 𝐵 ≠ ∅ )
5
fvprc
⊢ ( ¬ 𝐺 ∈ V → ( Base ‘ 𝐺 ) = ∅ )
6
1 5
eqtrid
⊢ ( ¬ 𝐺 ∈ V → 𝐵 = ∅ )
7
6
necon1ai
⊢ ( 𝐵 ≠ ∅ → 𝐺 ∈ V )
8
1 2
issgrpv
⊢ ( 𝐺 ∈ V → ( 𝐺 ∈ Smgrp ↔ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑎 + 𝑏 ) ∈ 𝐵 ∧ ∀ 𝑐 ∈ 𝐵 ( ( 𝑎 + 𝑏 ) + 𝑐 ) = ( 𝑎 + ( 𝑏 + 𝑐 ) ) ) ) )
9
4 7 8
3syl
⊢ ( ∃ 𝑒 ∈ 𝐵 ∀ 𝑎 ∈ 𝐵 ( ( 𝑒 + 𝑎 ) = 𝑎 ∧ ( 𝑎 + 𝑒 ) = 𝑎 ) → ( 𝐺 ∈ Smgrp ↔ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑎 + 𝑏 ) ∈ 𝐵 ∧ ∀ 𝑐 ∈ 𝐵 ( ( 𝑎 + 𝑏 ) + 𝑐 ) = ( 𝑎 + ( 𝑏 + 𝑐 ) ) ) ) )
10
9
pm5.32ri
⊢ ( ( 𝐺 ∈ Smgrp ∧ ∃ 𝑒 ∈ 𝐵 ∀ 𝑎 ∈ 𝐵 ( ( 𝑒 + 𝑎 ) = 𝑎 ∧ ( 𝑎 + 𝑒 ) = 𝑎 ) ) ↔ ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑎 + 𝑏 ) ∈ 𝐵 ∧ ∀ 𝑐 ∈ 𝐵 ( ( 𝑎 + 𝑏 ) + 𝑐 ) = ( 𝑎 + ( 𝑏 + 𝑐 ) ) ) ∧ ∃ 𝑒 ∈ 𝐵 ∀ 𝑎 ∈ 𝐵 ( ( 𝑒 + 𝑎 ) = 𝑎 ∧ ( 𝑎 + 𝑒 ) = 𝑎 ) ) )
11
3 10
bitri
⊢ ( 𝐺 ∈ Mnd ↔ ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑎 + 𝑏 ) ∈ 𝐵 ∧ ∀ 𝑐 ∈ 𝐵 ( ( 𝑎 + 𝑏 ) + 𝑐 ) = ( 𝑎 + ( 𝑏 + 𝑐 ) ) ) ∧ ∃ 𝑒 ∈ 𝐵 ∀ 𝑎 ∈ 𝐵 ( ( 𝑒 + 𝑎 ) = 𝑎 ∧ ( 𝑎 + 𝑒 ) = 𝑎 ) ) )