Step |
Hyp |
Ref |
Expression |
1 |
|
ismndd.b |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐺 ) ) |
2 |
|
ismndd.p |
⊢ ( 𝜑 → + = ( +g ‘ 𝐺 ) ) |
3 |
|
ismndd.c |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) |
4 |
|
ismndd.a |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
5 |
|
ismndd.z |
⊢ ( 𝜑 → 0 ∈ 𝐵 ) |
6 |
|
ismndd.i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 0 + 𝑥 ) = 𝑥 ) |
7 |
|
ismndd.j |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 + 0 ) = 𝑥 ) |
8 |
3
|
3expb |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) |
9 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑧 ∈ 𝐵 ) → 𝜑 ) |
10 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑧 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
11 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑧 ∈ 𝐵 ) → 𝑦 ∈ 𝐵 ) |
12 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑧 ∈ 𝐵 ) → 𝑧 ∈ 𝐵 ) |
13 |
9 10 11 12 4
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
14 |
13
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
15 |
8 14
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑥 + 𝑦 ) ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) ) |
16 |
15
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) ) |
17 |
2
|
oveqd |
⊢ ( 𝜑 → ( 𝑥 + 𝑦 ) = ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) |
18 |
17 1
|
eleq12d |
⊢ ( 𝜑 → ( ( 𝑥 + 𝑦 ) ∈ 𝐵 ↔ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) ) |
19 |
|
eqidd |
⊢ ( 𝜑 → 𝑧 = 𝑧 ) |
20 |
2 17 19
|
oveq123d |
⊢ ( 𝜑 → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) |
21 |
|
eqidd |
⊢ ( 𝜑 → 𝑥 = 𝑥 ) |
22 |
2
|
oveqd |
⊢ ( 𝜑 → ( 𝑦 + 𝑧 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) |
23 |
2 21 22
|
oveq123d |
⊢ ( 𝜑 → ( 𝑥 + ( 𝑦 + 𝑧 ) ) = ( 𝑥 ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
24 |
20 23
|
eqeq12d |
⊢ ( 𝜑 → ( ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ↔ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑥 ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) ) |
25 |
1 24
|
raleqbidv |
⊢ ( 𝜑 → ( ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ↔ ∀ 𝑧 ∈ ( Base ‘ 𝐺 ) ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑥 ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) ) |
26 |
18 25
|
anbi12d |
⊢ ( 𝜑 → ( ( ( 𝑥 + 𝑦 ) ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) ↔ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐺 ) ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑥 ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) ) ) |
27 |
1 26
|
raleqbidv |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐺 ) ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑥 ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) ) ) |
28 |
1 27
|
raleqbidv |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐺 ) ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑥 ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) ) ) |
29 |
16 28
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐺 ) ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑥 ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) ) |
30 |
5 1
|
eleqtrd |
⊢ ( 𝜑 → 0 ∈ ( Base ‘ 𝐺 ) ) |
31 |
1
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ) |
32 |
31
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → 𝑥 ∈ 𝐵 ) |
33 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → + = ( +g ‘ 𝐺 ) ) |
34 |
33
|
oveqd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 0 + 𝑥 ) = ( 0 ( +g ‘ 𝐺 ) 𝑥 ) ) |
35 |
34 6
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 0 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ) |
36 |
33
|
oveqd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 + 0 ) = ( 𝑥 ( +g ‘ 𝐺 ) 0 ) ) |
37 |
36 7
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ( +g ‘ 𝐺 ) 0 ) = 𝑥 ) |
38 |
35 37
|
jca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( 0 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐺 ) 0 ) = 𝑥 ) ) |
39 |
32 38
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ( 0 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐺 ) 0 ) = 𝑥 ) ) |
40 |
39
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ( ( 0 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐺 ) 0 ) = 𝑥 ) ) |
41 |
|
oveq1 |
⊢ ( 𝑢 = 0 → ( 𝑢 ( +g ‘ 𝐺 ) 𝑥 ) = ( 0 ( +g ‘ 𝐺 ) 𝑥 ) ) |
42 |
41
|
eqeq1d |
⊢ ( 𝑢 = 0 → ( ( 𝑢 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ↔ ( 0 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ) ) |
43 |
42
|
ovanraleqv |
⊢ ( 𝑢 = 0 → ( ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ( ( 𝑢 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐺 ) 𝑢 ) = 𝑥 ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ( ( 0 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐺 ) 0 ) = 𝑥 ) ) ) |
44 |
43
|
rspcev |
⊢ ( ( 0 ∈ ( Base ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ( ( 0 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐺 ) 0 ) = 𝑥 ) ) → ∃ 𝑢 ∈ ( Base ‘ 𝐺 ) ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ( ( 𝑢 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐺 ) 𝑢 ) = 𝑥 ) ) |
45 |
30 40 44
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑢 ∈ ( Base ‘ 𝐺 ) ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ( ( 𝑢 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐺 ) 𝑢 ) = 𝑥 ) ) |
46 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
47 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
48 |
46 47
|
ismnd |
⊢ ( 𝐺 ∈ Mnd ↔ ( ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐺 ) ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑥 ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) ∧ ∃ 𝑢 ∈ ( Base ‘ 𝐺 ) ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ( ( 𝑢 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐺 ) 𝑢 ) = 𝑥 ) ) ) |
49 |
29 45 48
|
sylanbrc |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |