Step |
Hyp |
Ref |
Expression |
1 |
|
ismnddef.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
ismnddef.p |
⊢ + = ( +g ‘ 𝐺 ) |
3 |
|
fvex |
⊢ ( Base ‘ 𝑔 ) ∈ V |
4 |
|
fvex |
⊢ ( +g ‘ 𝑔 ) ∈ V |
5 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( Base ‘ 𝑔 ) = ( Base ‘ 𝐺 ) ) |
6 |
5 1
|
eqtr4di |
⊢ ( 𝑔 = 𝐺 → ( Base ‘ 𝑔 ) = 𝐵 ) |
7 |
6
|
eqeq2d |
⊢ ( 𝑔 = 𝐺 → ( 𝑏 = ( Base ‘ 𝑔 ) ↔ 𝑏 = 𝐵 ) ) |
8 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( +g ‘ 𝑔 ) = ( +g ‘ 𝐺 ) ) |
9 |
8 2
|
eqtr4di |
⊢ ( 𝑔 = 𝐺 → ( +g ‘ 𝑔 ) = + ) |
10 |
9
|
eqeq2d |
⊢ ( 𝑔 = 𝐺 → ( 𝑝 = ( +g ‘ 𝑔 ) ↔ 𝑝 = + ) ) |
11 |
7 10
|
anbi12d |
⊢ ( 𝑔 = 𝐺 → ( ( 𝑏 = ( Base ‘ 𝑔 ) ∧ 𝑝 = ( +g ‘ 𝑔 ) ) ↔ ( 𝑏 = 𝐵 ∧ 𝑝 = + ) ) ) |
12 |
|
simpl |
⊢ ( ( 𝑏 = 𝐵 ∧ 𝑝 = + ) → 𝑏 = 𝐵 ) |
13 |
|
oveq |
⊢ ( 𝑝 = + → ( 𝑒 𝑝 𝑎 ) = ( 𝑒 + 𝑎 ) ) |
14 |
13
|
eqeq1d |
⊢ ( 𝑝 = + → ( ( 𝑒 𝑝 𝑎 ) = 𝑎 ↔ ( 𝑒 + 𝑎 ) = 𝑎 ) ) |
15 |
|
oveq |
⊢ ( 𝑝 = + → ( 𝑎 𝑝 𝑒 ) = ( 𝑎 + 𝑒 ) ) |
16 |
15
|
eqeq1d |
⊢ ( 𝑝 = + → ( ( 𝑎 𝑝 𝑒 ) = 𝑎 ↔ ( 𝑎 + 𝑒 ) = 𝑎 ) ) |
17 |
14 16
|
anbi12d |
⊢ ( 𝑝 = + → ( ( ( 𝑒 𝑝 𝑎 ) = 𝑎 ∧ ( 𝑎 𝑝 𝑒 ) = 𝑎 ) ↔ ( ( 𝑒 + 𝑎 ) = 𝑎 ∧ ( 𝑎 + 𝑒 ) = 𝑎 ) ) ) |
18 |
17
|
adantl |
⊢ ( ( 𝑏 = 𝐵 ∧ 𝑝 = + ) → ( ( ( 𝑒 𝑝 𝑎 ) = 𝑎 ∧ ( 𝑎 𝑝 𝑒 ) = 𝑎 ) ↔ ( ( 𝑒 + 𝑎 ) = 𝑎 ∧ ( 𝑎 + 𝑒 ) = 𝑎 ) ) ) |
19 |
12 18
|
raleqbidv |
⊢ ( ( 𝑏 = 𝐵 ∧ 𝑝 = + ) → ( ∀ 𝑎 ∈ 𝑏 ( ( 𝑒 𝑝 𝑎 ) = 𝑎 ∧ ( 𝑎 𝑝 𝑒 ) = 𝑎 ) ↔ ∀ 𝑎 ∈ 𝐵 ( ( 𝑒 + 𝑎 ) = 𝑎 ∧ ( 𝑎 + 𝑒 ) = 𝑎 ) ) ) |
20 |
12 19
|
rexeqbidv |
⊢ ( ( 𝑏 = 𝐵 ∧ 𝑝 = + ) → ( ∃ 𝑒 ∈ 𝑏 ∀ 𝑎 ∈ 𝑏 ( ( 𝑒 𝑝 𝑎 ) = 𝑎 ∧ ( 𝑎 𝑝 𝑒 ) = 𝑎 ) ↔ ∃ 𝑒 ∈ 𝐵 ∀ 𝑎 ∈ 𝐵 ( ( 𝑒 + 𝑎 ) = 𝑎 ∧ ( 𝑎 + 𝑒 ) = 𝑎 ) ) ) |
21 |
11 20
|
syl6bi |
⊢ ( 𝑔 = 𝐺 → ( ( 𝑏 = ( Base ‘ 𝑔 ) ∧ 𝑝 = ( +g ‘ 𝑔 ) ) → ( ∃ 𝑒 ∈ 𝑏 ∀ 𝑎 ∈ 𝑏 ( ( 𝑒 𝑝 𝑎 ) = 𝑎 ∧ ( 𝑎 𝑝 𝑒 ) = 𝑎 ) ↔ ∃ 𝑒 ∈ 𝐵 ∀ 𝑎 ∈ 𝐵 ( ( 𝑒 + 𝑎 ) = 𝑎 ∧ ( 𝑎 + 𝑒 ) = 𝑎 ) ) ) ) |
22 |
3 4 21
|
sbc2iedv |
⊢ ( 𝑔 = 𝐺 → ( [ ( Base ‘ 𝑔 ) / 𝑏 ] [ ( +g ‘ 𝑔 ) / 𝑝 ] ∃ 𝑒 ∈ 𝑏 ∀ 𝑎 ∈ 𝑏 ( ( 𝑒 𝑝 𝑎 ) = 𝑎 ∧ ( 𝑎 𝑝 𝑒 ) = 𝑎 ) ↔ ∃ 𝑒 ∈ 𝐵 ∀ 𝑎 ∈ 𝐵 ( ( 𝑒 + 𝑎 ) = 𝑎 ∧ ( 𝑎 + 𝑒 ) = 𝑎 ) ) ) |
23 |
|
df-mnd |
⊢ Mnd = { 𝑔 ∈ Smgrp ∣ [ ( Base ‘ 𝑔 ) / 𝑏 ] [ ( +g ‘ 𝑔 ) / 𝑝 ] ∃ 𝑒 ∈ 𝑏 ∀ 𝑎 ∈ 𝑏 ( ( 𝑒 𝑝 𝑎 ) = 𝑎 ∧ ( 𝑎 𝑝 𝑒 ) = 𝑎 ) } |
24 |
22 23
|
elrab2 |
⊢ ( 𝐺 ∈ Mnd ↔ ( 𝐺 ∈ Smgrp ∧ ∃ 𝑒 ∈ 𝐵 ∀ 𝑎 ∈ 𝐵 ( ( 𝑒 + 𝑎 ) = 𝑎 ∧ ( 𝑎 + 𝑒 ) = 𝑎 ) ) ) |