| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ismndo.1 | ⊢ 𝑋  =  dom  dom  𝐺 | 
						
							| 2 |  | df-mndo | ⊢ MndOp  =  ( SemiGrp  ∩   ExId  ) | 
						
							| 3 | 2 | eleq2i | ⊢ ( 𝐺  ∈  MndOp  ↔  𝐺  ∈  ( SemiGrp  ∩   ExId  ) ) | 
						
							| 4 |  | elin | ⊢ ( 𝐺  ∈  ( SemiGrp  ∩   ExId  )  ↔  ( 𝐺  ∈  SemiGrp  ∧  𝐺  ∈   ExId  ) ) | 
						
							| 5 | 1 | isexid | ⊢ ( 𝐺  ∈  𝐴  →  ( 𝐺  ∈   ExId   ↔  ∃ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( ( 𝑥 𝐺 𝑦 )  =  𝑦  ∧  ( 𝑦 𝐺 𝑥 )  =  𝑦 ) ) ) | 
						
							| 6 | 5 | anbi2d | ⊢ ( 𝐺  ∈  𝐴  →  ( ( 𝐺  ∈  SemiGrp  ∧  𝐺  ∈   ExId  )  ↔  ( 𝐺  ∈  SemiGrp  ∧  ∃ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( ( 𝑥 𝐺 𝑦 )  =  𝑦  ∧  ( 𝑦 𝐺 𝑥 )  =  𝑦 ) ) ) ) | 
						
							| 7 | 4 6 | bitrid | ⊢ ( 𝐺  ∈  𝐴  →  ( 𝐺  ∈  ( SemiGrp  ∩   ExId  )  ↔  ( 𝐺  ∈  SemiGrp  ∧  ∃ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( ( 𝑥 𝐺 𝑦 )  =  𝑦  ∧  ( 𝑦 𝐺 𝑥 )  =  𝑦 ) ) ) ) | 
						
							| 8 | 3 7 | bitrid | ⊢ ( 𝐺  ∈  𝐴  →  ( 𝐺  ∈  MndOp  ↔  ( 𝐺  ∈  SemiGrp  ∧  ∃ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( ( 𝑥 𝐺 𝑦 )  =  𝑦  ∧  ( 𝑦 𝐺 𝑥 )  =  𝑦 ) ) ) ) |