| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ismndo1.1 | ⊢ 𝑋  =  dom  dom  𝐺 | 
						
							| 2 | 1 | ismndo | ⊢ ( 𝐺  ∈  𝐴  →  ( 𝐺  ∈  MndOp  ↔  ( 𝐺  ∈  SemiGrp  ∧  ∃ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( ( 𝑥 𝐺 𝑦 )  =  𝑦  ∧  ( 𝑦 𝐺 𝑥 )  =  𝑦 ) ) ) ) | 
						
							| 3 | 1 | smgrpmgm | ⊢ ( 𝐺  ∈  SemiGrp  →  𝐺 : ( 𝑋  ×  𝑋 ) ⟶ 𝑋 ) | 
						
							| 4 | 3 | ad2antrl | ⊢ ( ( 𝐺  ∈  𝐴  ∧  ( 𝐺  ∈  SemiGrp  ∧  ∃ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( ( 𝑥 𝐺 𝑦 )  =  𝑦  ∧  ( 𝑦 𝐺 𝑥 )  =  𝑦 ) ) )  →  𝐺 : ( 𝑋  ×  𝑋 ) ⟶ 𝑋 ) | 
						
							| 5 | 1 | smgrpassOLD | ⊢ ( 𝐺  ∈  SemiGrp  →  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 )  =  ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) | 
						
							| 6 | 5 | ad2antrl | ⊢ ( ( 𝐺  ∈  𝐴  ∧  ( 𝐺  ∈  SemiGrp  ∧  ∃ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( ( 𝑥 𝐺 𝑦 )  =  𝑦  ∧  ( 𝑦 𝐺 𝑥 )  =  𝑦 ) ) )  →  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 )  =  ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) | 
						
							| 7 |  | simprr | ⊢ ( ( 𝐺  ∈  𝐴  ∧  ( 𝐺  ∈  SemiGrp  ∧  ∃ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( ( 𝑥 𝐺 𝑦 )  =  𝑦  ∧  ( 𝑦 𝐺 𝑥 )  =  𝑦 ) ) )  →  ∃ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( ( 𝑥 𝐺 𝑦 )  =  𝑦  ∧  ( 𝑦 𝐺 𝑥 )  =  𝑦 ) ) | 
						
							| 8 | 4 6 7 | 3jca | ⊢ ( ( 𝐺  ∈  𝐴  ∧  ( 𝐺  ∈  SemiGrp  ∧  ∃ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( ( 𝑥 𝐺 𝑦 )  =  𝑦  ∧  ( 𝑦 𝐺 𝑥 )  =  𝑦 ) ) )  →  ( 𝐺 : ( 𝑋  ×  𝑋 ) ⟶ 𝑋  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 )  =  ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) )  ∧  ∃ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( ( 𝑥 𝐺 𝑦 )  =  𝑦  ∧  ( 𝑦 𝐺 𝑥 )  =  𝑦 ) ) ) | 
						
							| 9 |  | 3simpa | ⊢ ( ( 𝐺 : ( 𝑋  ×  𝑋 ) ⟶ 𝑋  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 )  =  ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) )  ∧  ∃ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( ( 𝑥 𝐺 𝑦 )  =  𝑦  ∧  ( 𝑦 𝐺 𝑥 )  =  𝑦 ) )  →  ( 𝐺 : ( 𝑋  ×  𝑋 ) ⟶ 𝑋  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 )  =  ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) ) | 
						
							| 10 | 1 | issmgrpOLD | ⊢ ( 𝐺  ∈  𝐴  →  ( 𝐺  ∈  SemiGrp  ↔  ( 𝐺 : ( 𝑋  ×  𝑋 ) ⟶ 𝑋  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 )  =  ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) ) ) | 
						
							| 11 | 9 10 | imbitrrid | ⊢ ( 𝐺  ∈  𝐴  →  ( ( 𝐺 : ( 𝑋  ×  𝑋 ) ⟶ 𝑋  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 )  =  ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) )  ∧  ∃ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( ( 𝑥 𝐺 𝑦 )  =  𝑦  ∧  ( 𝑦 𝐺 𝑥 )  =  𝑦 ) )  →  𝐺  ∈  SemiGrp ) ) | 
						
							| 12 | 11 | imp | ⊢ ( ( 𝐺  ∈  𝐴  ∧  ( 𝐺 : ( 𝑋  ×  𝑋 ) ⟶ 𝑋  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 )  =  ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) )  ∧  ∃ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( ( 𝑥 𝐺 𝑦 )  =  𝑦  ∧  ( 𝑦 𝐺 𝑥 )  =  𝑦 ) ) )  →  𝐺  ∈  SemiGrp ) | 
						
							| 13 |  | simpr3 | ⊢ ( ( 𝐺  ∈  𝐴  ∧  ( 𝐺 : ( 𝑋  ×  𝑋 ) ⟶ 𝑋  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 )  =  ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) )  ∧  ∃ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( ( 𝑥 𝐺 𝑦 )  =  𝑦  ∧  ( 𝑦 𝐺 𝑥 )  =  𝑦 ) ) )  →  ∃ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( ( 𝑥 𝐺 𝑦 )  =  𝑦  ∧  ( 𝑦 𝐺 𝑥 )  =  𝑦 ) ) | 
						
							| 14 | 12 13 | jca | ⊢ ( ( 𝐺  ∈  𝐴  ∧  ( 𝐺 : ( 𝑋  ×  𝑋 ) ⟶ 𝑋  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 )  =  ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) )  ∧  ∃ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( ( 𝑥 𝐺 𝑦 )  =  𝑦  ∧  ( 𝑦 𝐺 𝑥 )  =  𝑦 ) ) )  →  ( 𝐺  ∈  SemiGrp  ∧  ∃ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( ( 𝑥 𝐺 𝑦 )  =  𝑦  ∧  ( 𝑦 𝐺 𝑥 )  =  𝑦 ) ) ) | 
						
							| 15 | 8 14 | impbida | ⊢ ( 𝐺  ∈  𝐴  →  ( ( 𝐺  ∈  SemiGrp  ∧  ∃ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( ( 𝑥 𝐺 𝑦 )  =  𝑦  ∧  ( 𝑦 𝐺 𝑥 )  =  𝑦 ) )  ↔  ( 𝐺 : ( 𝑋  ×  𝑋 ) ⟶ 𝑋  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 )  =  ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) )  ∧  ∃ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( ( 𝑥 𝐺 𝑦 )  =  𝑦  ∧  ( 𝑦 𝐺 𝑥 )  =  𝑦 ) ) ) ) | 
						
							| 16 | 2 15 | bitrd | ⊢ ( 𝐺  ∈  𝐴  →  ( 𝐺  ∈  MndOp  ↔  ( 𝐺 : ( 𝑋  ×  𝑋 ) ⟶ 𝑋  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 )  =  ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) )  ∧  ∃ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( ( 𝑥 𝐺 𝑦 )  =  𝑦  ∧  ( 𝑦 𝐺 𝑥 )  =  𝑦 ) ) ) ) |