Metamath Proof Explorer


Theorem ismndo1

Description: The predicate "is a monoid". (Contributed by FL, 2-Nov-2009) (Revised by Mario Carneiro, 22-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypothesis ismndo1.1 𝑋 = dom dom 𝐺
Assertion ismndo1 ( 𝐺𝐴 → ( 𝐺 ∈ MndOp ↔ ( 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥𝑋𝑦𝑋𝑧𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ∧ ∃ 𝑥𝑋𝑦𝑋 ( ( 𝑥 𝐺 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐺 𝑥 ) = 𝑦 ) ) ) )

Proof

Step Hyp Ref Expression
1 ismndo1.1 𝑋 = dom dom 𝐺
2 1 ismndo ( 𝐺𝐴 → ( 𝐺 ∈ MndOp ↔ ( 𝐺 ∈ SemiGrp ∧ ∃ 𝑥𝑋𝑦𝑋 ( ( 𝑥 𝐺 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐺 𝑥 ) = 𝑦 ) ) ) )
3 1 smgrpmgm ( 𝐺 ∈ SemiGrp → 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 )
4 3 ad2antrl ( ( 𝐺𝐴 ∧ ( 𝐺 ∈ SemiGrp ∧ ∃ 𝑥𝑋𝑦𝑋 ( ( 𝑥 𝐺 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐺 𝑥 ) = 𝑦 ) ) ) → 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 )
5 1 smgrpassOLD ( 𝐺 ∈ SemiGrp → ∀ 𝑥𝑋𝑦𝑋𝑧𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) )
6 5 ad2antrl ( ( 𝐺𝐴 ∧ ( 𝐺 ∈ SemiGrp ∧ ∃ 𝑥𝑋𝑦𝑋 ( ( 𝑥 𝐺 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐺 𝑥 ) = 𝑦 ) ) ) → ∀ 𝑥𝑋𝑦𝑋𝑧𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) )
7 simprr ( ( 𝐺𝐴 ∧ ( 𝐺 ∈ SemiGrp ∧ ∃ 𝑥𝑋𝑦𝑋 ( ( 𝑥 𝐺 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐺 𝑥 ) = 𝑦 ) ) ) → ∃ 𝑥𝑋𝑦𝑋 ( ( 𝑥 𝐺 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐺 𝑥 ) = 𝑦 ) )
8 4 6 7 3jca ( ( 𝐺𝐴 ∧ ( 𝐺 ∈ SemiGrp ∧ ∃ 𝑥𝑋𝑦𝑋 ( ( 𝑥 𝐺 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐺 𝑥 ) = 𝑦 ) ) ) → ( 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥𝑋𝑦𝑋𝑧𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ∧ ∃ 𝑥𝑋𝑦𝑋 ( ( 𝑥 𝐺 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐺 𝑥 ) = 𝑦 ) ) )
9 3simpa ( ( 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥𝑋𝑦𝑋𝑧𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ∧ ∃ 𝑥𝑋𝑦𝑋 ( ( 𝑥 𝐺 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐺 𝑥 ) = 𝑦 ) ) → ( 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥𝑋𝑦𝑋𝑧𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) )
10 1 issmgrpOLD ( 𝐺𝐴 → ( 𝐺 ∈ SemiGrp ↔ ( 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥𝑋𝑦𝑋𝑧𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) ) )
11 9 10 syl5ibr ( 𝐺𝐴 → ( ( 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥𝑋𝑦𝑋𝑧𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ∧ ∃ 𝑥𝑋𝑦𝑋 ( ( 𝑥 𝐺 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐺 𝑥 ) = 𝑦 ) ) → 𝐺 ∈ SemiGrp ) )
12 11 imp ( ( 𝐺𝐴 ∧ ( 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥𝑋𝑦𝑋𝑧𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ∧ ∃ 𝑥𝑋𝑦𝑋 ( ( 𝑥 𝐺 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐺 𝑥 ) = 𝑦 ) ) ) → 𝐺 ∈ SemiGrp )
13 simpr3 ( ( 𝐺𝐴 ∧ ( 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥𝑋𝑦𝑋𝑧𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ∧ ∃ 𝑥𝑋𝑦𝑋 ( ( 𝑥 𝐺 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐺 𝑥 ) = 𝑦 ) ) ) → ∃ 𝑥𝑋𝑦𝑋 ( ( 𝑥 𝐺 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐺 𝑥 ) = 𝑦 ) )
14 12 13 jca ( ( 𝐺𝐴 ∧ ( 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥𝑋𝑦𝑋𝑧𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ∧ ∃ 𝑥𝑋𝑦𝑋 ( ( 𝑥 𝐺 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐺 𝑥 ) = 𝑦 ) ) ) → ( 𝐺 ∈ SemiGrp ∧ ∃ 𝑥𝑋𝑦𝑋 ( ( 𝑥 𝐺 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐺 𝑥 ) = 𝑦 ) ) )
15 8 14 impbida ( 𝐺𝐴 → ( ( 𝐺 ∈ SemiGrp ∧ ∃ 𝑥𝑋𝑦𝑋 ( ( 𝑥 𝐺 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐺 𝑥 ) = 𝑦 ) ) ↔ ( 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥𝑋𝑦𝑋𝑧𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ∧ ∃ 𝑥𝑋𝑦𝑋 ( ( 𝑥 𝐺 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐺 𝑥 ) = 𝑦 ) ) ) )
16 2 15 bitrd ( 𝐺𝐴 → ( 𝐺 ∈ MndOp ↔ ( 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥𝑋𝑦𝑋𝑧𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ∧ ∃ 𝑥𝑋𝑦𝑋 ( ( 𝑥 𝐺 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐺 𝑥 ) = 𝑦 ) ) ) )