Step |
Hyp |
Ref |
Expression |
1 |
|
ismndo2.1 |
⊢ 𝑋 = ran 𝐺 |
2 |
|
mndomgmid |
⊢ ( 𝐺 ∈ MndOp → 𝐺 ∈ ( Magma ∩ ExId ) ) |
3 |
|
rngopidOLD |
⊢ ( 𝐺 ∈ ( Magma ∩ ExId ) → ran 𝐺 = dom dom 𝐺 ) |
4 |
2 3
|
syl |
⊢ ( 𝐺 ∈ MndOp → ran 𝐺 = dom dom 𝐺 ) |
5 |
1 4
|
syl5eq |
⊢ ( 𝐺 ∈ MndOp → 𝑋 = dom dom 𝐺 ) |
6 |
5
|
a1i |
⊢ ( 𝐺 ∈ 𝐴 → ( 𝐺 ∈ MndOp → 𝑋 = dom dom 𝐺 ) ) |
7 |
|
fdm |
⊢ ( 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 → dom 𝐺 = ( 𝑋 × 𝑋 ) ) |
8 |
7
|
dmeqd |
⊢ ( 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 → dom dom 𝐺 = dom ( 𝑋 × 𝑋 ) ) |
9 |
|
dmxpid |
⊢ dom ( 𝑋 × 𝑋 ) = 𝑋 |
10 |
8 9
|
eqtr2di |
⊢ ( 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 → 𝑋 = dom dom 𝐺 ) |
11 |
10
|
3ad2ant1 |
⊢ ( ( 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ∧ ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐺 𝑥 ) = 𝑦 ) ) → 𝑋 = dom dom 𝐺 ) |
12 |
11
|
a1i |
⊢ ( 𝐺 ∈ 𝐴 → ( ( 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ∧ ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐺 𝑥 ) = 𝑦 ) ) → 𝑋 = dom dom 𝐺 ) ) |
13 |
|
eqid |
⊢ dom dom 𝐺 = dom dom 𝐺 |
14 |
13
|
ismndo1 |
⊢ ( 𝐺 ∈ 𝐴 → ( 𝐺 ∈ MndOp ↔ ( 𝐺 : ( dom dom 𝐺 × dom dom 𝐺 ) ⟶ dom dom 𝐺 ∧ ∀ 𝑥 ∈ dom dom 𝐺 ∀ 𝑦 ∈ dom dom 𝐺 ∀ 𝑧 ∈ dom dom 𝐺 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ∧ ∃ 𝑥 ∈ dom dom 𝐺 ∀ 𝑦 ∈ dom dom 𝐺 ( ( 𝑥 𝐺 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐺 𝑥 ) = 𝑦 ) ) ) ) |
15 |
|
xpid11 |
⊢ ( ( 𝑋 × 𝑋 ) = ( dom dom 𝐺 × dom dom 𝐺 ) ↔ 𝑋 = dom dom 𝐺 ) |
16 |
15
|
biimpri |
⊢ ( 𝑋 = dom dom 𝐺 → ( 𝑋 × 𝑋 ) = ( dom dom 𝐺 × dom dom 𝐺 ) ) |
17 |
|
feq23 |
⊢ ( ( ( 𝑋 × 𝑋 ) = ( dom dom 𝐺 × dom dom 𝐺 ) ∧ 𝑋 = dom dom 𝐺 ) → ( 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ↔ 𝐺 : ( dom dom 𝐺 × dom dom 𝐺 ) ⟶ dom dom 𝐺 ) ) |
18 |
16 17
|
mpancom |
⊢ ( 𝑋 = dom dom 𝐺 → ( 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ↔ 𝐺 : ( dom dom 𝐺 × dom dom 𝐺 ) ⟶ dom dom 𝐺 ) ) |
19 |
|
raleq |
⊢ ( 𝑋 = dom dom 𝐺 → ( ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ↔ ∀ 𝑧 ∈ dom dom 𝐺 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) ) |
20 |
19
|
raleqbi1dv |
⊢ ( 𝑋 = dom dom 𝐺 → ( ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ↔ ∀ 𝑦 ∈ dom dom 𝐺 ∀ 𝑧 ∈ dom dom 𝐺 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) ) |
21 |
20
|
raleqbi1dv |
⊢ ( 𝑋 = dom dom 𝐺 → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ↔ ∀ 𝑥 ∈ dom dom 𝐺 ∀ 𝑦 ∈ dom dom 𝐺 ∀ 𝑧 ∈ dom dom 𝐺 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) ) |
22 |
|
raleq |
⊢ ( 𝑋 = dom dom 𝐺 → ( ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐺 𝑥 ) = 𝑦 ) ↔ ∀ 𝑦 ∈ dom dom 𝐺 ( ( 𝑥 𝐺 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐺 𝑥 ) = 𝑦 ) ) ) |
23 |
22
|
rexeqbi1dv |
⊢ ( 𝑋 = dom dom 𝐺 → ( ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐺 𝑥 ) = 𝑦 ) ↔ ∃ 𝑥 ∈ dom dom 𝐺 ∀ 𝑦 ∈ dom dom 𝐺 ( ( 𝑥 𝐺 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐺 𝑥 ) = 𝑦 ) ) ) |
24 |
18 21 23
|
3anbi123d |
⊢ ( 𝑋 = dom dom 𝐺 → ( ( 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ∧ ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐺 𝑥 ) = 𝑦 ) ) ↔ ( 𝐺 : ( dom dom 𝐺 × dom dom 𝐺 ) ⟶ dom dom 𝐺 ∧ ∀ 𝑥 ∈ dom dom 𝐺 ∀ 𝑦 ∈ dom dom 𝐺 ∀ 𝑧 ∈ dom dom 𝐺 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ∧ ∃ 𝑥 ∈ dom dom 𝐺 ∀ 𝑦 ∈ dom dom 𝐺 ( ( 𝑥 𝐺 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐺 𝑥 ) = 𝑦 ) ) ) ) |
25 |
24
|
bibi2d |
⊢ ( 𝑋 = dom dom 𝐺 → ( ( 𝐺 ∈ MndOp ↔ ( 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ∧ ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐺 𝑥 ) = 𝑦 ) ) ) ↔ ( 𝐺 ∈ MndOp ↔ ( 𝐺 : ( dom dom 𝐺 × dom dom 𝐺 ) ⟶ dom dom 𝐺 ∧ ∀ 𝑥 ∈ dom dom 𝐺 ∀ 𝑦 ∈ dom dom 𝐺 ∀ 𝑧 ∈ dom dom 𝐺 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ∧ ∃ 𝑥 ∈ dom dom 𝐺 ∀ 𝑦 ∈ dom dom 𝐺 ( ( 𝑥 𝐺 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐺 𝑥 ) = 𝑦 ) ) ) ) ) |
26 |
14 25
|
syl5ibrcom |
⊢ ( 𝐺 ∈ 𝐴 → ( 𝑋 = dom dom 𝐺 → ( 𝐺 ∈ MndOp ↔ ( 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ∧ ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐺 𝑥 ) = 𝑦 ) ) ) ) ) |
27 |
6 12 26
|
pm5.21ndd |
⊢ ( 𝐺 ∈ 𝐴 → ( 𝐺 ∈ MndOp ↔ ( 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ∧ ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐺 𝑥 ) = 𝑦 ) ) ) ) |