Step |
Hyp |
Ref |
Expression |
1 |
|
ismon.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
2 |
|
ismon.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
3 |
|
ismon.o |
⊢ · = ( comp ‘ 𝐶 ) |
4 |
|
ismon.s |
⊢ 𝑀 = ( Mono ‘ 𝐶 ) |
5 |
|
ismon.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
6 |
|
ismon.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
7 |
|
ismon.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
8 |
1 2 3 4 5
|
monfval |
⊢ ( 𝜑 → 𝑀 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∣ ∀ 𝑧 ∈ 𝐵 Fun ◡ ( 𝑔 ∈ ( 𝑧 𝐻 𝑥 ) ↦ ( 𝑓 ( 〈 𝑧 , 𝑥 〉 · 𝑦 ) 𝑔 ) ) } ) ) |
9 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → 𝑥 = 𝑋 ) |
10 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → 𝑦 = 𝑌 ) |
11 |
9 10
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑋 𝐻 𝑌 ) ) |
12 |
9
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( 𝑧 𝐻 𝑥 ) = ( 𝑧 𝐻 𝑋 ) ) |
13 |
9
|
opeq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → 〈 𝑧 , 𝑥 〉 = 〈 𝑧 , 𝑋 〉 ) |
14 |
13 10
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( 〈 𝑧 , 𝑥 〉 · 𝑦 ) = ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) ) |
15 |
14
|
oveqd |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( 𝑓 ( 〈 𝑧 , 𝑥 〉 · 𝑦 ) 𝑔 ) = ( 𝑓 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) ) |
16 |
12 15
|
mpteq12dv |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( 𝑔 ∈ ( 𝑧 𝐻 𝑥 ) ↦ ( 𝑓 ( 〈 𝑧 , 𝑥 〉 · 𝑦 ) 𝑔 ) ) = ( 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ↦ ( 𝑓 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) ) ) |
17 |
16
|
cnveqd |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ◡ ( 𝑔 ∈ ( 𝑧 𝐻 𝑥 ) ↦ ( 𝑓 ( 〈 𝑧 , 𝑥 〉 · 𝑦 ) 𝑔 ) ) = ◡ ( 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ↦ ( 𝑓 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) ) ) |
18 |
17
|
funeqd |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( Fun ◡ ( 𝑔 ∈ ( 𝑧 𝐻 𝑥 ) ↦ ( 𝑓 ( 〈 𝑧 , 𝑥 〉 · 𝑦 ) 𝑔 ) ) ↔ Fun ◡ ( 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ↦ ( 𝑓 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) ) ) ) |
19 |
18
|
ralbidv |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( ∀ 𝑧 ∈ 𝐵 Fun ◡ ( 𝑔 ∈ ( 𝑧 𝐻 𝑥 ) ↦ ( 𝑓 ( 〈 𝑧 , 𝑥 〉 · 𝑦 ) 𝑔 ) ) ↔ ∀ 𝑧 ∈ 𝐵 Fun ◡ ( 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ↦ ( 𝑓 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) ) ) ) |
20 |
11 19
|
rabeqbidv |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → { 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∣ ∀ 𝑧 ∈ 𝐵 Fun ◡ ( 𝑔 ∈ ( 𝑧 𝐻 𝑥 ) ↦ ( 𝑓 ( 〈 𝑧 , 𝑥 〉 · 𝑦 ) 𝑔 ) ) } = { 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∣ ∀ 𝑧 ∈ 𝐵 Fun ◡ ( 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ↦ ( 𝑓 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) ) } ) |
21 |
|
ovex |
⊢ ( 𝑋 𝐻 𝑌 ) ∈ V |
22 |
21
|
rabex |
⊢ { 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∣ ∀ 𝑧 ∈ 𝐵 Fun ◡ ( 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ↦ ( 𝑓 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) ) } ∈ V |
23 |
22
|
a1i |
⊢ ( 𝜑 → { 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∣ ∀ 𝑧 ∈ 𝐵 Fun ◡ ( 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ↦ ( 𝑓 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) ) } ∈ V ) |
24 |
8 20 6 7 23
|
ovmpod |
⊢ ( 𝜑 → ( 𝑋 𝑀 𝑌 ) = { 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∣ ∀ 𝑧 ∈ 𝐵 Fun ◡ ( 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ↦ ( 𝑓 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) ) } ) |
25 |
24
|
eleq2d |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ↔ 𝐹 ∈ { 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∣ ∀ 𝑧 ∈ 𝐵 Fun ◡ ( 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ↦ ( 𝑓 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) ) } ) ) |
26 |
|
oveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) = ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) ) |
27 |
26
|
mpteq2dv |
⊢ ( 𝑓 = 𝐹 → ( 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ↦ ( 𝑓 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) ) = ( 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ↦ ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) ) ) |
28 |
27
|
cnveqd |
⊢ ( 𝑓 = 𝐹 → ◡ ( 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ↦ ( 𝑓 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) ) = ◡ ( 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ↦ ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) ) ) |
29 |
28
|
funeqd |
⊢ ( 𝑓 = 𝐹 → ( Fun ◡ ( 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ↦ ( 𝑓 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) ) ↔ Fun ◡ ( 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ↦ ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) ) ) ) |
30 |
29
|
ralbidv |
⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑧 ∈ 𝐵 Fun ◡ ( 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ↦ ( 𝑓 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) ) ↔ ∀ 𝑧 ∈ 𝐵 Fun ◡ ( 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ↦ ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) ) ) ) |
31 |
30
|
elrab |
⊢ ( 𝐹 ∈ { 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∣ ∀ 𝑧 ∈ 𝐵 Fun ◡ ( 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ↦ ( 𝑓 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) ) } ↔ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ ∀ 𝑧 ∈ 𝐵 Fun ◡ ( 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ↦ ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) ) ) ) |
32 |
25 31
|
bitrdi |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ↔ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ ∀ 𝑧 ∈ 𝐵 Fun ◡ ( 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ↦ ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) ) ) ) ) |