Step |
Hyp |
Ref |
Expression |
1 |
|
ismon.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
2 |
|
ismon.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
3 |
|
ismon.o |
⊢ · = ( comp ‘ 𝐶 ) |
4 |
|
ismon.s |
⊢ 𝑀 = ( Mono ‘ 𝐶 ) |
5 |
|
ismon.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
6 |
|
ismon.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
7 |
|
ismon.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
8 |
1 2 3 4 5 6 7
|
ismon |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ↔ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ ∀ 𝑧 ∈ 𝐵 Fun ◡ ( 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ↦ ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) ) ) ) ) |
9 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ) ) → 𝐶 ∈ Cat ) |
10 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ) ) → 𝑧 ∈ 𝐵 ) |
11 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ) ) → 𝑋 ∈ 𝐵 ) |
12 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ) ) → 𝑌 ∈ 𝐵 ) |
13 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ) ) → 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ) |
14 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ) ) → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) |
15 |
1 2 3 9 10 11 12 13 14
|
catcocl |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ) ) → ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) ∈ ( 𝑧 𝐻 𝑌 ) ) |
16 |
15
|
anassrs |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ) → ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) ∈ ( 𝑧 𝐻 𝑌 ) ) |
17 |
16
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) ∧ 𝑧 ∈ 𝐵 ) → ∀ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) ∈ ( 𝑧 𝐻 𝑌 ) ) |
18 |
|
eqid |
⊢ ( 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ↦ ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) ) = ( 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ↦ ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) ) |
19 |
18
|
fmpt |
⊢ ( ∀ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) ∈ ( 𝑧 𝐻 𝑌 ) ↔ ( 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ↦ ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) ) : ( 𝑧 𝐻 𝑋 ) ⟶ ( 𝑧 𝐻 𝑌 ) ) |
20 |
|
df-f1 |
⊢ ( ( 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ↦ ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) ) : ( 𝑧 𝐻 𝑋 ) –1-1→ ( 𝑧 𝐻 𝑌 ) ↔ ( ( 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ↦ ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) ) : ( 𝑧 𝐻 𝑋 ) ⟶ ( 𝑧 𝐻 𝑌 ) ∧ Fun ◡ ( 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ↦ ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) ) ) ) |
21 |
20
|
baib |
⊢ ( ( 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ↦ ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) ) : ( 𝑧 𝐻 𝑋 ) ⟶ ( 𝑧 𝐻 𝑌 ) → ( ( 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ↦ ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) ) : ( 𝑧 𝐻 𝑋 ) –1-1→ ( 𝑧 𝐻 𝑌 ) ↔ Fun ◡ ( 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ↦ ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) ) ) ) |
22 |
19 21
|
sylbi |
⊢ ( ∀ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) ∈ ( 𝑧 𝐻 𝑌 ) → ( ( 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ↦ ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) ) : ( 𝑧 𝐻 𝑋 ) –1-1→ ( 𝑧 𝐻 𝑌 ) ↔ Fun ◡ ( 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ↦ ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) ) ) ) |
23 |
|
oveq2 |
⊢ ( 𝑔 = ℎ → ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) = ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) ℎ ) ) |
24 |
18 23
|
f1mpt |
⊢ ( ( 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ↦ ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) ) : ( 𝑧 𝐻 𝑋 ) –1-1→ ( 𝑧 𝐻 𝑌 ) ↔ ( ∀ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) ∈ ( 𝑧 𝐻 𝑌 ) ∧ ∀ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ∀ ℎ ∈ ( 𝑧 𝐻 𝑋 ) ( ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) = ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) ℎ ) → 𝑔 = ℎ ) ) ) |
25 |
24
|
baib |
⊢ ( ∀ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) ∈ ( 𝑧 𝐻 𝑌 ) → ( ( 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ↦ ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) ) : ( 𝑧 𝐻 𝑋 ) –1-1→ ( 𝑧 𝐻 𝑌 ) ↔ ∀ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ∀ ℎ ∈ ( 𝑧 𝐻 𝑋 ) ( ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) = ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) ℎ ) → 𝑔 = ℎ ) ) ) |
26 |
22 25
|
bitr3d |
⊢ ( ∀ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) ∈ ( 𝑧 𝐻 𝑌 ) → ( Fun ◡ ( 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ↦ ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) ) ↔ ∀ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ∀ ℎ ∈ ( 𝑧 𝐻 𝑋 ) ( ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) = ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) ℎ ) → 𝑔 = ℎ ) ) ) |
27 |
17 26
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) ∧ 𝑧 ∈ 𝐵 ) → ( Fun ◡ ( 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ↦ ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) ) ↔ ∀ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ∀ ℎ ∈ ( 𝑧 𝐻 𝑋 ) ( ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) = ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) ℎ ) → 𝑔 = ℎ ) ) ) |
28 |
27
|
ralbidva |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) → ( ∀ 𝑧 ∈ 𝐵 Fun ◡ ( 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ↦ ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) ) ↔ ∀ 𝑧 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ∀ ℎ ∈ ( 𝑧 𝐻 𝑋 ) ( ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) = ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) ℎ ) → 𝑔 = ℎ ) ) ) |
29 |
28
|
pm5.32da |
⊢ ( 𝜑 → ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ ∀ 𝑧 ∈ 𝐵 Fun ◡ ( 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ↦ ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) ) ) ↔ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ∀ ℎ ∈ ( 𝑧 𝐻 𝑋 ) ( ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) = ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) ℎ ) → 𝑔 = ℎ ) ) ) ) |
30 |
8 29
|
bitrd |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ↔ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ∀ ℎ ∈ ( 𝑧 𝐻 𝑋 ) ( ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) = ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) ℎ ) → 𝑔 = ℎ ) ) ) ) |