| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ismon.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 2 |  | ismon.h | ⊢ 𝐻  =  ( Hom  ‘ 𝐶 ) | 
						
							| 3 |  | ismon.o | ⊢  ·   =  ( comp ‘ 𝐶 ) | 
						
							| 4 |  | ismon.s | ⊢ 𝑀  =  ( Mono ‘ 𝐶 ) | 
						
							| 5 |  | ismon.c | ⊢ ( 𝜑  →  𝐶  ∈  Cat ) | 
						
							| 6 |  | ismon.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 7 |  | ismon.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 8 | 1 2 3 4 5 6 7 | ismon | ⊢ ( 𝜑  →  ( 𝐹  ∈  ( 𝑋 𝑀 𝑌 )  ↔  ( 𝐹  ∈  ( 𝑋 𝐻 𝑌 )  ∧  ∀ 𝑧  ∈  𝐵 Fun  ◡ ( 𝑔  ∈  ( 𝑧 𝐻 𝑋 )  ↦  ( 𝐹 ( 〈 𝑧 ,  𝑋 〉  ·  𝑌 ) 𝑔 ) ) ) ) ) | 
						
							| 9 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  ( 𝑋 𝐻 𝑌 ) )  ∧  ( 𝑧  ∈  𝐵  ∧  𝑔  ∈  ( 𝑧 𝐻 𝑋 ) ) )  →  𝐶  ∈  Cat ) | 
						
							| 10 |  | simprl | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  ( 𝑋 𝐻 𝑌 ) )  ∧  ( 𝑧  ∈  𝐵  ∧  𝑔  ∈  ( 𝑧 𝐻 𝑋 ) ) )  →  𝑧  ∈  𝐵 ) | 
						
							| 11 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  ( 𝑋 𝐻 𝑌 ) )  ∧  ( 𝑧  ∈  𝐵  ∧  𝑔  ∈  ( 𝑧 𝐻 𝑋 ) ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 12 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  ( 𝑋 𝐻 𝑌 ) )  ∧  ( 𝑧  ∈  𝐵  ∧  𝑔  ∈  ( 𝑧 𝐻 𝑋 ) ) )  →  𝑌  ∈  𝐵 ) | 
						
							| 13 |  | simprr | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  ( 𝑋 𝐻 𝑌 ) )  ∧  ( 𝑧  ∈  𝐵  ∧  𝑔  ∈  ( 𝑧 𝐻 𝑋 ) ) )  →  𝑔  ∈  ( 𝑧 𝐻 𝑋 ) ) | 
						
							| 14 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  ( 𝑋 𝐻 𝑌 ) )  ∧  ( 𝑧  ∈  𝐵  ∧  𝑔  ∈  ( 𝑧 𝐻 𝑋 ) ) )  →  𝐹  ∈  ( 𝑋 𝐻 𝑌 ) ) | 
						
							| 15 | 1 2 3 9 10 11 12 13 14 | catcocl | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  ( 𝑋 𝐻 𝑌 ) )  ∧  ( 𝑧  ∈  𝐵  ∧  𝑔  ∈  ( 𝑧 𝐻 𝑋 ) ) )  →  ( 𝐹 ( 〈 𝑧 ,  𝑋 〉  ·  𝑌 ) 𝑔 )  ∈  ( 𝑧 𝐻 𝑌 ) ) | 
						
							| 16 | 15 | anassrs | ⊢ ( ( ( ( 𝜑  ∧  𝐹  ∈  ( 𝑋 𝐻 𝑌 ) )  ∧  𝑧  ∈  𝐵 )  ∧  𝑔  ∈  ( 𝑧 𝐻 𝑋 ) )  →  ( 𝐹 ( 〈 𝑧 ,  𝑋 〉  ·  𝑌 ) 𝑔 )  ∈  ( 𝑧 𝐻 𝑌 ) ) | 
						
							| 17 | 16 | ralrimiva | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  ( 𝑋 𝐻 𝑌 ) )  ∧  𝑧  ∈  𝐵 )  →  ∀ 𝑔  ∈  ( 𝑧 𝐻 𝑋 ) ( 𝐹 ( 〈 𝑧 ,  𝑋 〉  ·  𝑌 ) 𝑔 )  ∈  ( 𝑧 𝐻 𝑌 ) ) | 
						
							| 18 |  | eqid | ⊢ ( 𝑔  ∈  ( 𝑧 𝐻 𝑋 )  ↦  ( 𝐹 ( 〈 𝑧 ,  𝑋 〉  ·  𝑌 ) 𝑔 ) )  =  ( 𝑔  ∈  ( 𝑧 𝐻 𝑋 )  ↦  ( 𝐹 ( 〈 𝑧 ,  𝑋 〉  ·  𝑌 ) 𝑔 ) ) | 
						
							| 19 | 18 | fmpt | ⊢ ( ∀ 𝑔  ∈  ( 𝑧 𝐻 𝑋 ) ( 𝐹 ( 〈 𝑧 ,  𝑋 〉  ·  𝑌 ) 𝑔 )  ∈  ( 𝑧 𝐻 𝑌 )  ↔  ( 𝑔  ∈  ( 𝑧 𝐻 𝑋 )  ↦  ( 𝐹 ( 〈 𝑧 ,  𝑋 〉  ·  𝑌 ) 𝑔 ) ) : ( 𝑧 𝐻 𝑋 ) ⟶ ( 𝑧 𝐻 𝑌 ) ) | 
						
							| 20 |  | df-f1 | ⊢ ( ( 𝑔  ∈  ( 𝑧 𝐻 𝑋 )  ↦  ( 𝐹 ( 〈 𝑧 ,  𝑋 〉  ·  𝑌 ) 𝑔 ) ) : ( 𝑧 𝐻 𝑋 ) –1-1→ ( 𝑧 𝐻 𝑌 )  ↔  ( ( 𝑔  ∈  ( 𝑧 𝐻 𝑋 )  ↦  ( 𝐹 ( 〈 𝑧 ,  𝑋 〉  ·  𝑌 ) 𝑔 ) ) : ( 𝑧 𝐻 𝑋 ) ⟶ ( 𝑧 𝐻 𝑌 )  ∧  Fun  ◡ ( 𝑔  ∈  ( 𝑧 𝐻 𝑋 )  ↦  ( 𝐹 ( 〈 𝑧 ,  𝑋 〉  ·  𝑌 ) 𝑔 ) ) ) ) | 
						
							| 21 | 20 | baib | ⊢ ( ( 𝑔  ∈  ( 𝑧 𝐻 𝑋 )  ↦  ( 𝐹 ( 〈 𝑧 ,  𝑋 〉  ·  𝑌 ) 𝑔 ) ) : ( 𝑧 𝐻 𝑋 ) ⟶ ( 𝑧 𝐻 𝑌 )  →  ( ( 𝑔  ∈  ( 𝑧 𝐻 𝑋 )  ↦  ( 𝐹 ( 〈 𝑧 ,  𝑋 〉  ·  𝑌 ) 𝑔 ) ) : ( 𝑧 𝐻 𝑋 ) –1-1→ ( 𝑧 𝐻 𝑌 )  ↔  Fun  ◡ ( 𝑔  ∈  ( 𝑧 𝐻 𝑋 )  ↦  ( 𝐹 ( 〈 𝑧 ,  𝑋 〉  ·  𝑌 ) 𝑔 ) ) ) ) | 
						
							| 22 | 19 21 | sylbi | ⊢ ( ∀ 𝑔  ∈  ( 𝑧 𝐻 𝑋 ) ( 𝐹 ( 〈 𝑧 ,  𝑋 〉  ·  𝑌 ) 𝑔 )  ∈  ( 𝑧 𝐻 𝑌 )  →  ( ( 𝑔  ∈  ( 𝑧 𝐻 𝑋 )  ↦  ( 𝐹 ( 〈 𝑧 ,  𝑋 〉  ·  𝑌 ) 𝑔 ) ) : ( 𝑧 𝐻 𝑋 ) –1-1→ ( 𝑧 𝐻 𝑌 )  ↔  Fun  ◡ ( 𝑔  ∈  ( 𝑧 𝐻 𝑋 )  ↦  ( 𝐹 ( 〈 𝑧 ,  𝑋 〉  ·  𝑌 ) 𝑔 ) ) ) ) | 
						
							| 23 |  | oveq2 | ⊢ ( 𝑔  =  ℎ  →  ( 𝐹 ( 〈 𝑧 ,  𝑋 〉  ·  𝑌 ) 𝑔 )  =  ( 𝐹 ( 〈 𝑧 ,  𝑋 〉  ·  𝑌 ) ℎ ) ) | 
						
							| 24 | 18 23 | f1mpt | ⊢ ( ( 𝑔  ∈  ( 𝑧 𝐻 𝑋 )  ↦  ( 𝐹 ( 〈 𝑧 ,  𝑋 〉  ·  𝑌 ) 𝑔 ) ) : ( 𝑧 𝐻 𝑋 ) –1-1→ ( 𝑧 𝐻 𝑌 )  ↔  ( ∀ 𝑔  ∈  ( 𝑧 𝐻 𝑋 ) ( 𝐹 ( 〈 𝑧 ,  𝑋 〉  ·  𝑌 ) 𝑔 )  ∈  ( 𝑧 𝐻 𝑌 )  ∧  ∀ 𝑔  ∈  ( 𝑧 𝐻 𝑋 ) ∀ ℎ  ∈  ( 𝑧 𝐻 𝑋 ) ( ( 𝐹 ( 〈 𝑧 ,  𝑋 〉  ·  𝑌 ) 𝑔 )  =  ( 𝐹 ( 〈 𝑧 ,  𝑋 〉  ·  𝑌 ) ℎ )  →  𝑔  =  ℎ ) ) ) | 
						
							| 25 | 24 | baib | ⊢ ( ∀ 𝑔  ∈  ( 𝑧 𝐻 𝑋 ) ( 𝐹 ( 〈 𝑧 ,  𝑋 〉  ·  𝑌 ) 𝑔 )  ∈  ( 𝑧 𝐻 𝑌 )  →  ( ( 𝑔  ∈  ( 𝑧 𝐻 𝑋 )  ↦  ( 𝐹 ( 〈 𝑧 ,  𝑋 〉  ·  𝑌 ) 𝑔 ) ) : ( 𝑧 𝐻 𝑋 ) –1-1→ ( 𝑧 𝐻 𝑌 )  ↔  ∀ 𝑔  ∈  ( 𝑧 𝐻 𝑋 ) ∀ ℎ  ∈  ( 𝑧 𝐻 𝑋 ) ( ( 𝐹 ( 〈 𝑧 ,  𝑋 〉  ·  𝑌 ) 𝑔 )  =  ( 𝐹 ( 〈 𝑧 ,  𝑋 〉  ·  𝑌 ) ℎ )  →  𝑔  =  ℎ ) ) ) | 
						
							| 26 | 22 25 | bitr3d | ⊢ ( ∀ 𝑔  ∈  ( 𝑧 𝐻 𝑋 ) ( 𝐹 ( 〈 𝑧 ,  𝑋 〉  ·  𝑌 ) 𝑔 )  ∈  ( 𝑧 𝐻 𝑌 )  →  ( Fun  ◡ ( 𝑔  ∈  ( 𝑧 𝐻 𝑋 )  ↦  ( 𝐹 ( 〈 𝑧 ,  𝑋 〉  ·  𝑌 ) 𝑔 ) )  ↔  ∀ 𝑔  ∈  ( 𝑧 𝐻 𝑋 ) ∀ ℎ  ∈  ( 𝑧 𝐻 𝑋 ) ( ( 𝐹 ( 〈 𝑧 ,  𝑋 〉  ·  𝑌 ) 𝑔 )  =  ( 𝐹 ( 〈 𝑧 ,  𝑋 〉  ·  𝑌 ) ℎ )  →  𝑔  =  ℎ ) ) ) | 
						
							| 27 | 17 26 | syl | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  ( 𝑋 𝐻 𝑌 ) )  ∧  𝑧  ∈  𝐵 )  →  ( Fun  ◡ ( 𝑔  ∈  ( 𝑧 𝐻 𝑋 )  ↦  ( 𝐹 ( 〈 𝑧 ,  𝑋 〉  ·  𝑌 ) 𝑔 ) )  ↔  ∀ 𝑔  ∈  ( 𝑧 𝐻 𝑋 ) ∀ ℎ  ∈  ( 𝑧 𝐻 𝑋 ) ( ( 𝐹 ( 〈 𝑧 ,  𝑋 〉  ·  𝑌 ) 𝑔 )  =  ( 𝐹 ( 〈 𝑧 ,  𝑋 〉  ·  𝑌 ) ℎ )  →  𝑔  =  ℎ ) ) ) | 
						
							| 28 | 27 | ralbidva | ⊢ ( ( 𝜑  ∧  𝐹  ∈  ( 𝑋 𝐻 𝑌 ) )  →  ( ∀ 𝑧  ∈  𝐵 Fun  ◡ ( 𝑔  ∈  ( 𝑧 𝐻 𝑋 )  ↦  ( 𝐹 ( 〈 𝑧 ,  𝑋 〉  ·  𝑌 ) 𝑔 ) )  ↔  ∀ 𝑧  ∈  𝐵 ∀ 𝑔  ∈  ( 𝑧 𝐻 𝑋 ) ∀ ℎ  ∈  ( 𝑧 𝐻 𝑋 ) ( ( 𝐹 ( 〈 𝑧 ,  𝑋 〉  ·  𝑌 ) 𝑔 )  =  ( 𝐹 ( 〈 𝑧 ,  𝑋 〉  ·  𝑌 ) ℎ )  →  𝑔  =  ℎ ) ) ) | 
						
							| 29 | 28 | pm5.32da | ⊢ ( 𝜑  →  ( ( 𝐹  ∈  ( 𝑋 𝐻 𝑌 )  ∧  ∀ 𝑧  ∈  𝐵 Fun  ◡ ( 𝑔  ∈  ( 𝑧 𝐻 𝑋 )  ↦  ( 𝐹 ( 〈 𝑧 ,  𝑋 〉  ·  𝑌 ) 𝑔 ) ) )  ↔  ( 𝐹  ∈  ( 𝑋 𝐻 𝑌 )  ∧  ∀ 𝑧  ∈  𝐵 ∀ 𝑔  ∈  ( 𝑧 𝐻 𝑋 ) ∀ ℎ  ∈  ( 𝑧 𝐻 𝑋 ) ( ( 𝐹 ( 〈 𝑧 ,  𝑋 〉  ·  𝑌 ) 𝑔 )  =  ( 𝐹 ( 〈 𝑧 ,  𝑋 〉  ·  𝑌 ) ℎ )  →  𝑔  =  ℎ ) ) ) ) | 
						
							| 30 | 8 29 | bitrd | ⊢ ( 𝜑  →  ( 𝐹  ∈  ( 𝑋 𝑀 𝑌 )  ↔  ( 𝐹  ∈  ( 𝑋 𝐻 𝑌 )  ∧  ∀ 𝑧  ∈  𝐵 ∀ 𝑔  ∈  ( 𝑧 𝐻 𝑋 ) ∀ ℎ  ∈  ( 𝑧 𝐻 𝑋 ) ( ( 𝐹 ( 〈 𝑧 ,  𝑋 〉  ·  𝑌 ) 𝑔 )  =  ( 𝐹 ( 〈 𝑧 ,  𝑋 〉  ·  𝑌 ) ℎ )  →  𝑔  =  ℎ ) ) ) ) |