Step |
Hyp |
Ref |
Expression |
1 |
|
elfvex |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝑋 ∈ V ) |
2 |
|
elex |
⊢ ( 𝑋 ∈ 𝐶 → 𝑋 ∈ V ) |
3 |
2
|
3ad2ant2 |
⊢ ( ( 𝐶 ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ 𝐶 ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶 ) ) → 𝑋 ∈ V ) |
4 |
|
pweq |
⊢ ( 𝑥 = 𝑋 → 𝒫 𝑥 = 𝒫 𝑋 ) |
5 |
4
|
pweqd |
⊢ ( 𝑥 = 𝑋 → 𝒫 𝒫 𝑥 = 𝒫 𝒫 𝑋 ) |
6 |
|
eleq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ∈ 𝑐 ↔ 𝑋 ∈ 𝑐 ) ) |
7 |
6
|
anbi1d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 ∈ 𝑐 ∧ ∀ 𝑠 ∈ 𝒫 𝑐 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐 ) ) ↔ ( 𝑋 ∈ 𝑐 ∧ ∀ 𝑠 ∈ 𝒫 𝑐 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐 ) ) ) ) |
8 |
5 7
|
rabeqbidv |
⊢ ( 𝑥 = 𝑋 → { 𝑐 ∈ 𝒫 𝒫 𝑥 ∣ ( 𝑥 ∈ 𝑐 ∧ ∀ 𝑠 ∈ 𝒫 𝑐 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐 ) ) } = { 𝑐 ∈ 𝒫 𝒫 𝑋 ∣ ( 𝑋 ∈ 𝑐 ∧ ∀ 𝑠 ∈ 𝒫 𝑐 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐 ) ) } ) |
9 |
|
df-mre |
⊢ Moore = ( 𝑥 ∈ V ↦ { 𝑐 ∈ 𝒫 𝒫 𝑥 ∣ ( 𝑥 ∈ 𝑐 ∧ ∀ 𝑠 ∈ 𝒫 𝑐 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐 ) ) } ) |
10 |
|
vpwex |
⊢ 𝒫 𝑥 ∈ V |
11 |
10
|
pwex |
⊢ 𝒫 𝒫 𝑥 ∈ V |
12 |
11
|
rabex |
⊢ { 𝑐 ∈ 𝒫 𝒫 𝑥 ∣ ( 𝑥 ∈ 𝑐 ∧ ∀ 𝑠 ∈ 𝒫 𝑐 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐 ) ) } ∈ V |
13 |
8 9 12
|
fvmpt3i |
⊢ ( 𝑋 ∈ V → ( Moore ‘ 𝑋 ) = { 𝑐 ∈ 𝒫 𝒫 𝑋 ∣ ( 𝑋 ∈ 𝑐 ∧ ∀ 𝑠 ∈ 𝒫 𝑐 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐 ) ) } ) |
14 |
13
|
eleq2d |
⊢ ( 𝑋 ∈ V → ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ↔ 𝐶 ∈ { 𝑐 ∈ 𝒫 𝒫 𝑋 ∣ ( 𝑋 ∈ 𝑐 ∧ ∀ 𝑠 ∈ 𝒫 𝑐 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐 ) ) } ) ) |
15 |
|
eleq2 |
⊢ ( 𝑐 = 𝐶 → ( 𝑋 ∈ 𝑐 ↔ 𝑋 ∈ 𝐶 ) ) |
16 |
|
pweq |
⊢ ( 𝑐 = 𝐶 → 𝒫 𝑐 = 𝒫 𝐶 ) |
17 |
|
eleq2 |
⊢ ( 𝑐 = 𝐶 → ( ∩ 𝑠 ∈ 𝑐 ↔ ∩ 𝑠 ∈ 𝐶 ) ) |
18 |
17
|
imbi2d |
⊢ ( 𝑐 = 𝐶 → ( ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐 ) ↔ ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶 ) ) ) |
19 |
16 18
|
raleqbidv |
⊢ ( 𝑐 = 𝐶 → ( ∀ 𝑠 ∈ 𝒫 𝑐 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐 ) ↔ ∀ 𝑠 ∈ 𝒫 𝐶 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶 ) ) ) |
20 |
15 19
|
anbi12d |
⊢ ( 𝑐 = 𝐶 → ( ( 𝑋 ∈ 𝑐 ∧ ∀ 𝑠 ∈ 𝒫 𝑐 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐 ) ) ↔ ( 𝑋 ∈ 𝐶 ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶 ) ) ) ) |
21 |
20
|
elrab |
⊢ ( 𝐶 ∈ { 𝑐 ∈ 𝒫 𝒫 𝑋 ∣ ( 𝑋 ∈ 𝑐 ∧ ∀ 𝑠 ∈ 𝒫 𝑐 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐 ) ) } ↔ ( 𝐶 ∈ 𝒫 𝒫 𝑋 ∧ ( 𝑋 ∈ 𝐶 ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶 ) ) ) ) |
22 |
21
|
a1i |
⊢ ( 𝑋 ∈ V → ( 𝐶 ∈ { 𝑐 ∈ 𝒫 𝒫 𝑋 ∣ ( 𝑋 ∈ 𝑐 ∧ ∀ 𝑠 ∈ 𝒫 𝑐 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐 ) ) } ↔ ( 𝐶 ∈ 𝒫 𝒫 𝑋 ∧ ( 𝑋 ∈ 𝐶 ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶 ) ) ) ) ) |
23 |
|
pwexg |
⊢ ( 𝑋 ∈ V → 𝒫 𝑋 ∈ V ) |
24 |
|
elpw2g |
⊢ ( 𝒫 𝑋 ∈ V → ( 𝐶 ∈ 𝒫 𝒫 𝑋 ↔ 𝐶 ⊆ 𝒫 𝑋 ) ) |
25 |
23 24
|
syl |
⊢ ( 𝑋 ∈ V → ( 𝐶 ∈ 𝒫 𝒫 𝑋 ↔ 𝐶 ⊆ 𝒫 𝑋 ) ) |
26 |
25
|
anbi1d |
⊢ ( 𝑋 ∈ V → ( ( 𝐶 ∈ 𝒫 𝒫 𝑋 ∧ ( 𝑋 ∈ 𝐶 ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶 ) ) ) ↔ ( 𝐶 ⊆ 𝒫 𝑋 ∧ ( 𝑋 ∈ 𝐶 ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶 ) ) ) ) ) |
27 |
|
3anass |
⊢ ( ( 𝐶 ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ 𝐶 ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶 ) ) ↔ ( 𝐶 ⊆ 𝒫 𝑋 ∧ ( 𝑋 ∈ 𝐶 ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶 ) ) ) ) |
28 |
26 27
|
bitr4di |
⊢ ( 𝑋 ∈ V → ( ( 𝐶 ∈ 𝒫 𝒫 𝑋 ∧ ( 𝑋 ∈ 𝐶 ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶 ) ) ) ↔ ( 𝐶 ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ 𝐶 ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶 ) ) ) ) |
29 |
14 22 28
|
3bitrd |
⊢ ( 𝑋 ∈ V → ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ↔ ( 𝐶 ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ 𝐶 ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶 ) ) ) ) |
30 |
1 3 29
|
pm5.21nii |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ↔ ( 𝐶 ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ 𝐶 ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶 ) ) ) |