| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elfvex |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝑋 ∈ V ) |
| 2 |
|
elex |
⊢ ( 𝑋 ∈ 𝐶 → 𝑋 ∈ V ) |
| 3 |
2
|
3ad2ant2 |
⊢ ( ( 𝐶 ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ 𝐶 ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶 ) ) → 𝑋 ∈ V ) |
| 4 |
|
pweq |
⊢ ( 𝑥 = 𝑋 → 𝒫 𝑥 = 𝒫 𝑋 ) |
| 5 |
4
|
pweqd |
⊢ ( 𝑥 = 𝑋 → 𝒫 𝒫 𝑥 = 𝒫 𝒫 𝑋 ) |
| 6 |
|
eleq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ∈ 𝑐 ↔ 𝑋 ∈ 𝑐 ) ) |
| 7 |
6
|
anbi1d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 ∈ 𝑐 ∧ ∀ 𝑠 ∈ 𝒫 𝑐 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐 ) ) ↔ ( 𝑋 ∈ 𝑐 ∧ ∀ 𝑠 ∈ 𝒫 𝑐 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐 ) ) ) ) |
| 8 |
5 7
|
rabeqbidv |
⊢ ( 𝑥 = 𝑋 → { 𝑐 ∈ 𝒫 𝒫 𝑥 ∣ ( 𝑥 ∈ 𝑐 ∧ ∀ 𝑠 ∈ 𝒫 𝑐 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐 ) ) } = { 𝑐 ∈ 𝒫 𝒫 𝑋 ∣ ( 𝑋 ∈ 𝑐 ∧ ∀ 𝑠 ∈ 𝒫 𝑐 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐 ) ) } ) |
| 9 |
|
df-mre |
⊢ Moore = ( 𝑥 ∈ V ↦ { 𝑐 ∈ 𝒫 𝒫 𝑥 ∣ ( 𝑥 ∈ 𝑐 ∧ ∀ 𝑠 ∈ 𝒫 𝑐 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐 ) ) } ) |
| 10 |
|
vpwex |
⊢ 𝒫 𝑥 ∈ V |
| 11 |
10
|
pwex |
⊢ 𝒫 𝒫 𝑥 ∈ V |
| 12 |
11
|
rabex |
⊢ { 𝑐 ∈ 𝒫 𝒫 𝑥 ∣ ( 𝑥 ∈ 𝑐 ∧ ∀ 𝑠 ∈ 𝒫 𝑐 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐 ) ) } ∈ V |
| 13 |
8 9 12
|
fvmpt3i |
⊢ ( 𝑋 ∈ V → ( Moore ‘ 𝑋 ) = { 𝑐 ∈ 𝒫 𝒫 𝑋 ∣ ( 𝑋 ∈ 𝑐 ∧ ∀ 𝑠 ∈ 𝒫 𝑐 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐 ) ) } ) |
| 14 |
13
|
eleq2d |
⊢ ( 𝑋 ∈ V → ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ↔ 𝐶 ∈ { 𝑐 ∈ 𝒫 𝒫 𝑋 ∣ ( 𝑋 ∈ 𝑐 ∧ ∀ 𝑠 ∈ 𝒫 𝑐 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐 ) ) } ) ) |
| 15 |
|
eleq2 |
⊢ ( 𝑐 = 𝐶 → ( 𝑋 ∈ 𝑐 ↔ 𝑋 ∈ 𝐶 ) ) |
| 16 |
|
pweq |
⊢ ( 𝑐 = 𝐶 → 𝒫 𝑐 = 𝒫 𝐶 ) |
| 17 |
|
eleq2 |
⊢ ( 𝑐 = 𝐶 → ( ∩ 𝑠 ∈ 𝑐 ↔ ∩ 𝑠 ∈ 𝐶 ) ) |
| 18 |
17
|
imbi2d |
⊢ ( 𝑐 = 𝐶 → ( ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐 ) ↔ ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶 ) ) ) |
| 19 |
16 18
|
raleqbidv |
⊢ ( 𝑐 = 𝐶 → ( ∀ 𝑠 ∈ 𝒫 𝑐 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐 ) ↔ ∀ 𝑠 ∈ 𝒫 𝐶 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶 ) ) ) |
| 20 |
15 19
|
anbi12d |
⊢ ( 𝑐 = 𝐶 → ( ( 𝑋 ∈ 𝑐 ∧ ∀ 𝑠 ∈ 𝒫 𝑐 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐 ) ) ↔ ( 𝑋 ∈ 𝐶 ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶 ) ) ) ) |
| 21 |
20
|
elrab |
⊢ ( 𝐶 ∈ { 𝑐 ∈ 𝒫 𝒫 𝑋 ∣ ( 𝑋 ∈ 𝑐 ∧ ∀ 𝑠 ∈ 𝒫 𝑐 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐 ) ) } ↔ ( 𝐶 ∈ 𝒫 𝒫 𝑋 ∧ ( 𝑋 ∈ 𝐶 ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶 ) ) ) ) |
| 22 |
21
|
a1i |
⊢ ( 𝑋 ∈ V → ( 𝐶 ∈ { 𝑐 ∈ 𝒫 𝒫 𝑋 ∣ ( 𝑋 ∈ 𝑐 ∧ ∀ 𝑠 ∈ 𝒫 𝑐 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐 ) ) } ↔ ( 𝐶 ∈ 𝒫 𝒫 𝑋 ∧ ( 𝑋 ∈ 𝐶 ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶 ) ) ) ) ) |
| 23 |
|
pwexg |
⊢ ( 𝑋 ∈ V → 𝒫 𝑋 ∈ V ) |
| 24 |
|
elpw2g |
⊢ ( 𝒫 𝑋 ∈ V → ( 𝐶 ∈ 𝒫 𝒫 𝑋 ↔ 𝐶 ⊆ 𝒫 𝑋 ) ) |
| 25 |
23 24
|
syl |
⊢ ( 𝑋 ∈ V → ( 𝐶 ∈ 𝒫 𝒫 𝑋 ↔ 𝐶 ⊆ 𝒫 𝑋 ) ) |
| 26 |
25
|
anbi1d |
⊢ ( 𝑋 ∈ V → ( ( 𝐶 ∈ 𝒫 𝒫 𝑋 ∧ ( 𝑋 ∈ 𝐶 ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶 ) ) ) ↔ ( 𝐶 ⊆ 𝒫 𝑋 ∧ ( 𝑋 ∈ 𝐶 ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶 ) ) ) ) ) |
| 27 |
|
3anass |
⊢ ( ( 𝐶 ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ 𝐶 ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶 ) ) ↔ ( 𝐶 ⊆ 𝒫 𝑋 ∧ ( 𝑋 ∈ 𝐶 ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶 ) ) ) ) |
| 28 |
26 27
|
bitr4di |
⊢ ( 𝑋 ∈ V → ( ( 𝐶 ∈ 𝒫 𝒫 𝑋 ∧ ( 𝑋 ∈ 𝐶 ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶 ) ) ) ↔ ( 𝐶 ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ 𝐶 ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶 ) ) ) ) |
| 29 |
14 22 28
|
3bitrd |
⊢ ( 𝑋 ∈ V → ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ↔ ( 𝐶 ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ 𝐶 ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶 ) ) ) ) |
| 30 |
1 3 29
|
pm5.21nii |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ↔ ( 𝐶 ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ 𝐶 ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶 ) ) ) |