Description: Properties that determine a Moore collection. (Contributed by Stefan O'Rear, 30-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ismred.ss | ⊢ ( 𝜑 → 𝐶 ⊆ 𝒫 𝑋 ) | |
ismred.ba | ⊢ ( 𝜑 → 𝑋 ∈ 𝐶 ) | ||
ismred.in | ⊢ ( ( 𝜑 ∧ 𝑠 ⊆ 𝐶 ∧ 𝑠 ≠ ∅ ) → ∩ 𝑠 ∈ 𝐶 ) | ||
Assertion | ismred | ⊢ ( 𝜑 → 𝐶 ∈ ( Moore ‘ 𝑋 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismred.ss | ⊢ ( 𝜑 → 𝐶 ⊆ 𝒫 𝑋 ) | |
2 | ismred.ba | ⊢ ( 𝜑 → 𝑋 ∈ 𝐶 ) | |
3 | ismred.in | ⊢ ( ( 𝜑 ∧ 𝑠 ⊆ 𝐶 ∧ 𝑠 ≠ ∅ ) → ∩ 𝑠 ∈ 𝐶 ) | |
4 | velpw | ⊢ ( 𝑠 ∈ 𝒫 𝐶 ↔ 𝑠 ⊆ 𝐶 ) | |
5 | 3 | 3expia | ⊢ ( ( 𝜑 ∧ 𝑠 ⊆ 𝐶 ) → ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶 ) ) |
6 | 4 5 | sylan2b | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐶 ) → ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶 ) ) |
7 | 6 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑠 ∈ 𝒫 𝐶 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶 ) ) |
8 | ismre | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ↔ ( 𝐶 ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ 𝐶 ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶 ) ) ) | |
9 | 1 2 7 8 | syl3anbrc | ⊢ ( 𝜑 → 𝐶 ∈ ( Moore ‘ 𝑋 ) ) |