Metamath Proof Explorer


Theorem ismred

Description: Properties that determine a Moore collection. (Contributed by Stefan O'Rear, 30-Jan-2015)

Ref Expression
Hypotheses ismred.ss ( 𝜑𝐶 ⊆ 𝒫 𝑋 )
ismred.ba ( 𝜑𝑋𝐶 )
ismred.in ( ( 𝜑𝑠𝐶𝑠 ≠ ∅ ) → 𝑠𝐶 )
Assertion ismred ( 𝜑𝐶 ∈ ( Moore ‘ 𝑋 ) )

Proof

Step Hyp Ref Expression
1 ismred.ss ( 𝜑𝐶 ⊆ 𝒫 𝑋 )
2 ismred.ba ( 𝜑𝑋𝐶 )
3 ismred.in ( ( 𝜑𝑠𝐶𝑠 ≠ ∅ ) → 𝑠𝐶 )
4 velpw ( 𝑠 ∈ 𝒫 𝐶𝑠𝐶 )
5 3 3expia ( ( 𝜑𝑠𝐶 ) → ( 𝑠 ≠ ∅ → 𝑠𝐶 ) )
6 4 5 sylan2b ( ( 𝜑𝑠 ∈ 𝒫 𝐶 ) → ( 𝑠 ≠ ∅ → 𝑠𝐶 ) )
7 6 ralrimiva ( 𝜑 → ∀ 𝑠 ∈ 𝒫 𝐶 ( 𝑠 ≠ ∅ → 𝑠𝐶 ) )
8 ismre ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ↔ ( 𝐶 ⊆ 𝒫 𝑋𝑋𝐶 ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( 𝑠 ≠ ∅ → 𝑠𝐶 ) ) )
9 1 2 7 8 syl3anbrc ( 𝜑𝐶 ∈ ( Moore ‘ 𝑋 ) )