| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ismri.1 | ⊢ 𝑁  =  ( mrCls ‘ 𝐴 ) | 
						
							| 2 |  | ismri.2 | ⊢ 𝐼  =  ( mrInd ‘ 𝐴 ) | 
						
							| 3 | 1 2 | mrisval | ⊢ ( 𝐴  ∈  ( Moore ‘ 𝑋 )  →  𝐼  =  { 𝑠  ∈  𝒫  𝑋  ∣  ∀ 𝑥  ∈  𝑠 ¬  𝑥  ∈  ( 𝑁 ‘ ( 𝑠  ∖  { 𝑥 } ) ) } ) | 
						
							| 4 | 3 | eleq2d | ⊢ ( 𝐴  ∈  ( Moore ‘ 𝑋 )  →  ( 𝑆  ∈  𝐼  ↔  𝑆  ∈  { 𝑠  ∈  𝒫  𝑋  ∣  ∀ 𝑥  ∈  𝑠 ¬  𝑥  ∈  ( 𝑁 ‘ ( 𝑠  ∖  { 𝑥 } ) ) } ) ) | 
						
							| 5 |  | difeq1 | ⊢ ( 𝑠  =  𝑆  →  ( 𝑠  ∖  { 𝑥 } )  =  ( 𝑆  ∖  { 𝑥 } ) ) | 
						
							| 6 | 5 | fveq2d | ⊢ ( 𝑠  =  𝑆  →  ( 𝑁 ‘ ( 𝑠  ∖  { 𝑥 } ) )  =  ( 𝑁 ‘ ( 𝑆  ∖  { 𝑥 } ) ) ) | 
						
							| 7 | 6 | eleq2d | ⊢ ( 𝑠  =  𝑆  →  ( 𝑥  ∈  ( 𝑁 ‘ ( 𝑠  ∖  { 𝑥 } ) )  ↔  𝑥  ∈  ( 𝑁 ‘ ( 𝑆  ∖  { 𝑥 } ) ) ) ) | 
						
							| 8 | 7 | notbid | ⊢ ( 𝑠  =  𝑆  →  ( ¬  𝑥  ∈  ( 𝑁 ‘ ( 𝑠  ∖  { 𝑥 } ) )  ↔  ¬  𝑥  ∈  ( 𝑁 ‘ ( 𝑆  ∖  { 𝑥 } ) ) ) ) | 
						
							| 9 | 8 | raleqbi1dv | ⊢ ( 𝑠  =  𝑆  →  ( ∀ 𝑥  ∈  𝑠 ¬  𝑥  ∈  ( 𝑁 ‘ ( 𝑠  ∖  { 𝑥 } ) )  ↔  ∀ 𝑥  ∈  𝑆 ¬  𝑥  ∈  ( 𝑁 ‘ ( 𝑆  ∖  { 𝑥 } ) ) ) ) | 
						
							| 10 | 9 | elrab | ⊢ ( 𝑆  ∈  { 𝑠  ∈  𝒫  𝑋  ∣  ∀ 𝑥  ∈  𝑠 ¬  𝑥  ∈  ( 𝑁 ‘ ( 𝑠  ∖  { 𝑥 } ) ) }  ↔  ( 𝑆  ∈  𝒫  𝑋  ∧  ∀ 𝑥  ∈  𝑆 ¬  𝑥  ∈  ( 𝑁 ‘ ( 𝑆  ∖  { 𝑥 } ) ) ) ) | 
						
							| 11 | 4 10 | bitrdi | ⊢ ( 𝐴  ∈  ( Moore ‘ 𝑋 )  →  ( 𝑆  ∈  𝐼  ↔  ( 𝑆  ∈  𝒫  𝑋  ∧  ∀ 𝑥  ∈  𝑆 ¬  𝑥  ∈  ( 𝑁 ‘ ( 𝑆  ∖  { 𝑥 } ) ) ) ) ) | 
						
							| 12 |  | elfvex | ⊢ ( 𝐴  ∈  ( Moore ‘ 𝑋 )  →  𝑋  ∈  V ) | 
						
							| 13 |  | elpw2g | ⊢ ( 𝑋  ∈  V  →  ( 𝑆  ∈  𝒫  𝑋  ↔  𝑆  ⊆  𝑋 ) ) | 
						
							| 14 | 12 13 | syl | ⊢ ( 𝐴  ∈  ( Moore ‘ 𝑋 )  →  ( 𝑆  ∈  𝒫  𝑋  ↔  𝑆  ⊆  𝑋 ) ) | 
						
							| 15 | 14 | anbi1d | ⊢ ( 𝐴  ∈  ( Moore ‘ 𝑋 )  →  ( ( 𝑆  ∈  𝒫  𝑋  ∧  ∀ 𝑥  ∈  𝑆 ¬  𝑥  ∈  ( 𝑁 ‘ ( 𝑆  ∖  { 𝑥 } ) ) )  ↔  ( 𝑆  ⊆  𝑋  ∧  ∀ 𝑥  ∈  𝑆 ¬  𝑥  ∈  ( 𝑁 ‘ ( 𝑆  ∖  { 𝑥 } ) ) ) ) ) | 
						
							| 16 | 11 15 | bitrd | ⊢ ( 𝐴  ∈  ( Moore ‘ 𝑋 )  →  ( 𝑆  ∈  𝐼  ↔  ( 𝑆  ⊆  𝑋  ∧  ∀ 𝑥  ∈  𝑆 ¬  𝑥  ∈  ( 𝑁 ‘ ( 𝑆  ∖  { 𝑥 } ) ) ) ) ) |