Step |
Hyp |
Ref |
Expression |
1 |
|
ismri.1 |
⊢ 𝑁 = ( mrCls ‘ 𝐴 ) |
2 |
|
ismri.2 |
⊢ 𝐼 = ( mrInd ‘ 𝐴 ) |
3 |
1 2
|
mrisval |
⊢ ( 𝐴 ∈ ( Moore ‘ 𝑋 ) → 𝐼 = { 𝑠 ∈ 𝒫 𝑋 ∣ ∀ 𝑥 ∈ 𝑠 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑠 ∖ { 𝑥 } ) ) } ) |
4 |
3
|
eleq2d |
⊢ ( 𝐴 ∈ ( Moore ‘ 𝑋 ) → ( 𝑆 ∈ 𝐼 ↔ 𝑆 ∈ { 𝑠 ∈ 𝒫 𝑋 ∣ ∀ 𝑥 ∈ 𝑠 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑠 ∖ { 𝑥 } ) ) } ) ) |
5 |
|
difeq1 |
⊢ ( 𝑠 = 𝑆 → ( 𝑠 ∖ { 𝑥 } ) = ( 𝑆 ∖ { 𝑥 } ) ) |
6 |
5
|
fveq2d |
⊢ ( 𝑠 = 𝑆 → ( 𝑁 ‘ ( 𝑠 ∖ { 𝑥 } ) ) = ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) |
7 |
6
|
eleq2d |
⊢ ( 𝑠 = 𝑆 → ( 𝑥 ∈ ( 𝑁 ‘ ( 𝑠 ∖ { 𝑥 } ) ) ↔ 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) ) |
8 |
7
|
notbid |
⊢ ( 𝑠 = 𝑆 → ( ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑠 ∖ { 𝑥 } ) ) ↔ ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) ) |
9 |
8
|
raleqbi1dv |
⊢ ( 𝑠 = 𝑆 → ( ∀ 𝑥 ∈ 𝑠 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑠 ∖ { 𝑥 } ) ) ↔ ∀ 𝑥 ∈ 𝑆 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) ) |
10 |
9
|
elrab |
⊢ ( 𝑆 ∈ { 𝑠 ∈ 𝒫 𝑋 ∣ ∀ 𝑥 ∈ 𝑠 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑠 ∖ { 𝑥 } ) ) } ↔ ( 𝑆 ∈ 𝒫 𝑋 ∧ ∀ 𝑥 ∈ 𝑆 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) ) |
11 |
4 10
|
bitrdi |
⊢ ( 𝐴 ∈ ( Moore ‘ 𝑋 ) → ( 𝑆 ∈ 𝐼 ↔ ( 𝑆 ∈ 𝒫 𝑋 ∧ ∀ 𝑥 ∈ 𝑆 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) ) ) |
12 |
|
elfvex |
⊢ ( 𝐴 ∈ ( Moore ‘ 𝑋 ) → 𝑋 ∈ V ) |
13 |
|
elpw2g |
⊢ ( 𝑋 ∈ V → ( 𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋 ) ) |
14 |
12 13
|
syl |
⊢ ( 𝐴 ∈ ( Moore ‘ 𝑋 ) → ( 𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋 ) ) |
15 |
14
|
anbi1d |
⊢ ( 𝐴 ∈ ( Moore ‘ 𝑋 ) → ( ( 𝑆 ∈ 𝒫 𝑋 ∧ ∀ 𝑥 ∈ 𝑆 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) ↔ ( 𝑆 ⊆ 𝑋 ∧ ∀ 𝑥 ∈ 𝑆 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) ) ) |
16 |
11 15
|
bitrd |
⊢ ( 𝐴 ∈ ( Moore ‘ 𝑋 ) → ( 𝑆 ∈ 𝐼 ↔ ( 𝑆 ⊆ 𝑋 ∧ ∀ 𝑥 ∈ 𝑆 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) ) ) |