Metamath Proof Explorer
Description: Criterion for a subset of the base set in a Moore system to be
independent. Deduction form. (Contributed by David Moews, 1-May-2017)
|
|
Ref |
Expression |
|
Hypotheses |
ismri2.1 |
⊢ 𝑁 = ( mrCls ‘ 𝐴 ) |
|
|
ismri2.2 |
⊢ 𝐼 = ( mrInd ‘ 𝐴 ) |
|
|
ismri2d.3 |
⊢ ( 𝜑 → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) |
|
|
ismri2d.4 |
⊢ ( 𝜑 → 𝑆 ⊆ 𝑋 ) |
|
Assertion |
ismri2d |
⊢ ( 𝜑 → ( 𝑆 ∈ 𝐼 ↔ ∀ 𝑥 ∈ 𝑆 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ismri2.1 |
⊢ 𝑁 = ( mrCls ‘ 𝐴 ) |
2 |
|
ismri2.2 |
⊢ 𝐼 = ( mrInd ‘ 𝐴 ) |
3 |
|
ismri2d.3 |
⊢ ( 𝜑 → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) |
4 |
|
ismri2d.4 |
⊢ ( 𝜑 → 𝑆 ⊆ 𝑋 ) |
5 |
1 2
|
ismri2 |
⊢ ( ( 𝐴 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑆 ∈ 𝐼 ↔ ∀ 𝑥 ∈ 𝑆 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) ) |
6 |
3 4 5
|
syl2anc |
⊢ ( 𝜑 → ( 𝑆 ∈ 𝐼 ↔ ∀ 𝑥 ∈ 𝑆 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) ) |