Metamath Proof Explorer
		
		
		
		Description:  Criterion for a subset of the base set in a Moore system to be
       independent.  Deduction form.  (Contributed by David Moews, 1-May-2017)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | ismri2.1 | ⊢ 𝑁  =  ( mrCls ‘ 𝐴 ) | 
					
						|  |  | ismri2.2 | ⊢ 𝐼  =  ( mrInd ‘ 𝐴 ) | 
					
						|  |  | ismri2d.3 | ⊢ ( 𝜑  →  𝐴  ∈  ( Moore ‘ 𝑋 ) ) | 
					
						|  |  | ismri2d.4 | ⊢ ( 𝜑  →  𝑆  ⊆  𝑋 ) | 
				
					|  | Assertion | ismri2d | ⊢  ( 𝜑  →  ( 𝑆  ∈  𝐼  ↔  ∀ 𝑥  ∈  𝑆 ¬  𝑥  ∈  ( 𝑁 ‘ ( 𝑆  ∖  { 𝑥 } ) ) ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ismri2.1 | ⊢ 𝑁  =  ( mrCls ‘ 𝐴 ) | 
						
							| 2 |  | ismri2.2 | ⊢ 𝐼  =  ( mrInd ‘ 𝐴 ) | 
						
							| 3 |  | ismri2d.3 | ⊢ ( 𝜑  →  𝐴  ∈  ( Moore ‘ 𝑋 ) ) | 
						
							| 4 |  | ismri2d.4 | ⊢ ( 𝜑  →  𝑆  ⊆  𝑋 ) | 
						
							| 5 | 1 2 | ismri2 | ⊢ ( ( 𝐴  ∈  ( Moore ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  →  ( 𝑆  ∈  𝐼  ↔  ∀ 𝑥  ∈  𝑆 ¬  𝑥  ∈  ( 𝑁 ‘ ( 𝑆  ∖  { 𝑥 } ) ) ) ) | 
						
							| 6 | 3 4 5 | syl2anc | ⊢ ( 𝜑  →  ( 𝑆  ∈  𝐼  ↔  ∀ 𝑥  ∈  𝑆 ¬  𝑥  ∈  ( 𝑁 ‘ ( 𝑆  ∖  { 𝑥 } ) ) ) ) |