Database
BASIC STRUCTURES
Moore spaces
Independent sets in a Moore system
ismri2dd
Metamath Proof Explorer
Description: Definition of independence of a subset of the base set in a Moore
system. One-way deduction form. (Contributed by David Moews , 1-May-2017)
Ref
Expression
Hypotheses
ismri2.1
⊢ 𝑁 = ( mrCls ‘ 𝐴 )
ismri2.2
⊢ 𝐼 = ( mrInd ‘ 𝐴 )
ismri2d.3
⊢ ( 𝜑 → 𝐴 ∈ ( Moore ‘ 𝑋 ) )
ismri2d.4
⊢ ( 𝜑 → 𝑆 ⊆ 𝑋 )
ismri2dd.5
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) )
Assertion
ismri2dd
⊢ ( 𝜑 → 𝑆 ∈ 𝐼 )
Proof
Step
Hyp
Ref
Expression
1
ismri2.1
⊢ 𝑁 = ( mrCls ‘ 𝐴 )
2
ismri2.2
⊢ 𝐼 = ( mrInd ‘ 𝐴 )
3
ismri2d.3
⊢ ( 𝜑 → 𝐴 ∈ ( Moore ‘ 𝑋 ) )
4
ismri2d.4
⊢ ( 𝜑 → 𝑆 ⊆ 𝑋 )
5
ismri2dd.5
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) )
6
1 2 3 4
ismri2d
⊢ ( 𝜑 → ( 𝑆 ∈ 𝐼 ↔ ∀ 𝑥 ∈ 𝑆 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) )
7
5 6
mpbird
⊢ ( 𝜑 → 𝑆 ∈ 𝐼 )