Metamath Proof Explorer


Theorem ismri2dd

Description: Definition of independence of a subset of the base set in a Moore system. One-way deduction form. (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses ismri2.1 𝑁 = ( mrCls ‘ 𝐴 )
ismri2.2 𝐼 = ( mrInd ‘ 𝐴 )
ismri2d.3 ( 𝜑𝐴 ∈ ( Moore ‘ 𝑋 ) )
ismri2d.4 ( 𝜑𝑆𝑋 )
ismri2dd.5 ( 𝜑 → ∀ 𝑥𝑆 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) )
Assertion ismri2dd ( 𝜑𝑆𝐼 )

Proof

Step Hyp Ref Expression
1 ismri2.1 𝑁 = ( mrCls ‘ 𝐴 )
2 ismri2.2 𝐼 = ( mrInd ‘ 𝐴 )
3 ismri2d.3 ( 𝜑𝐴 ∈ ( Moore ‘ 𝑋 ) )
4 ismri2d.4 ( 𝜑𝑆𝑋 )
5 ismri2dd.5 ( 𝜑 → ∀ 𝑥𝑆 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) )
6 1 2 3 4 ismri2d ( 𝜑 → ( 𝑆𝐼 ↔ ∀ 𝑥𝑆 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) )
7 5 6 mpbird ( 𝜑𝑆𝐼 )