Database BASIC STRUCTURES Moore spaces Independent sets in a Moore system ismri2dd  
				
		 
		
			
		 
		Description:   Definition of independence of a subset of the base set in a Moore
       system.  One-way deduction form.  (Contributed by David Moews , 1-May-2017) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						ismri2.1 ⊢  𝑁   =  ( mrCls ‘ 𝐴  )  
					
						ismri2.2 ⊢  𝐼   =  ( mrInd ‘ 𝐴  )  
					
						ismri2d.3 ⊢  ( 𝜑   →  𝐴   ∈  ( Moore ‘ 𝑋  ) )  
					
						ismri2d.4 ⊢  ( 𝜑   →  𝑆   ⊆  𝑋  )  
					
						ismri2dd.5 ⊢  ( 𝜑   →  ∀ 𝑥   ∈  𝑆  ¬  𝑥   ∈  ( 𝑁  ‘ ( 𝑆   ∖  { 𝑥  } ) ) )  
				
					Assertion 
					ismri2dd ⊢   ( 𝜑   →  𝑆   ∈  𝐼  )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							ismri2.1 ⊢  𝑁   =  ( mrCls ‘ 𝐴  )  
						
							2 
								
							 
							ismri2.2 ⊢  𝐼   =  ( mrInd ‘ 𝐴  )  
						
							3 
								
							 
							ismri2d.3 ⊢  ( 𝜑   →  𝐴   ∈  ( Moore ‘ 𝑋  ) )  
						
							4 
								
							 
							ismri2d.4 ⊢  ( 𝜑   →  𝑆   ⊆  𝑋  )  
						
							5 
								
							 
							ismri2dd.5 ⊢  ( 𝜑   →  ∀ 𝑥   ∈  𝑆  ¬  𝑥   ∈  ( 𝑁  ‘ ( 𝑆   ∖  { 𝑥  } ) ) )  
						
							6 
								1  2  3  4 
							 
							ismri2d ⊢  ( 𝜑   →  ( 𝑆   ∈  𝐼   ↔  ∀ 𝑥   ∈  𝑆  ¬  𝑥   ∈  ( 𝑁  ‘ ( 𝑆   ∖  { 𝑥  } ) ) ) )  
						
							7 
								5  6 
							 
							mpbird ⊢  ( 𝜑   →  𝑆   ∈  𝐼  )