Step |
Hyp |
Ref |
Expression |
1 |
|
isms.j |
⊢ 𝐽 = ( TopOpen ‘ 𝐾 ) |
2 |
|
isms.x |
⊢ 𝑋 = ( Base ‘ 𝐾 ) |
3 |
|
isms.d |
⊢ 𝐷 = ( ( dist ‘ 𝐾 ) ↾ ( 𝑋 × 𝑋 ) ) |
4 |
|
fveq2 |
⊢ ( 𝑓 = 𝐾 → ( dist ‘ 𝑓 ) = ( dist ‘ 𝐾 ) ) |
5 |
|
fveq2 |
⊢ ( 𝑓 = 𝐾 → ( Base ‘ 𝑓 ) = ( Base ‘ 𝐾 ) ) |
6 |
5 2
|
eqtr4di |
⊢ ( 𝑓 = 𝐾 → ( Base ‘ 𝑓 ) = 𝑋 ) |
7 |
6
|
sqxpeqd |
⊢ ( 𝑓 = 𝐾 → ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) = ( 𝑋 × 𝑋 ) ) |
8 |
4 7
|
reseq12d |
⊢ ( 𝑓 = 𝐾 → ( ( dist ‘ 𝑓 ) ↾ ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) ) = ( ( dist ‘ 𝐾 ) ↾ ( 𝑋 × 𝑋 ) ) ) |
9 |
8 3
|
eqtr4di |
⊢ ( 𝑓 = 𝐾 → ( ( dist ‘ 𝑓 ) ↾ ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) ) = 𝐷 ) |
10 |
6
|
fveq2d |
⊢ ( 𝑓 = 𝐾 → ( Met ‘ ( Base ‘ 𝑓 ) ) = ( Met ‘ 𝑋 ) ) |
11 |
9 10
|
eleq12d |
⊢ ( 𝑓 = 𝐾 → ( ( ( dist ‘ 𝑓 ) ↾ ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝑓 ) ) ↔ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) |
12 |
|
df-ms |
⊢ MetSp = { 𝑓 ∈ ∞MetSp ∣ ( ( dist ‘ 𝑓 ) ↾ ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝑓 ) ) } |
13 |
11 12
|
elrab2 |
⊢ ( 𝐾 ∈ MetSp ↔ ( 𝐾 ∈ ∞MetSp ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) |