Step |
Hyp |
Ref |
Expression |
1 |
|
isms.j |
⊢ 𝐽 = ( TopOpen ‘ 𝐾 ) |
2 |
|
isms.x |
⊢ 𝑋 = ( Base ‘ 𝐾 ) |
3 |
|
isms.d |
⊢ 𝐷 = ( ( dist ‘ 𝐾 ) ↾ ( 𝑋 × 𝑋 ) ) |
4 |
1 2 3
|
isxms2 |
⊢ ( 𝐾 ∈ ∞MetSp ↔ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐽 = ( MetOpen ‘ 𝐷 ) ) ) |
5 |
4
|
anbi1i |
⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ↔ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐽 = ( MetOpen ‘ 𝐷 ) ) ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) |
6 |
1 2 3
|
isms |
⊢ ( 𝐾 ∈ MetSp ↔ ( 𝐾 ∈ ∞MetSp ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) |
7 |
|
metxmet |
⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
8 |
7
|
pm4.71ri |
⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) ↔ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) |
9 |
8
|
anbi1i |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 = ( MetOpen ‘ 𝐷 ) ) ↔ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ∧ 𝐽 = ( MetOpen ‘ 𝐷 ) ) ) |
10 |
|
an32 |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ∧ 𝐽 = ( MetOpen ‘ 𝐷 ) ) ↔ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐽 = ( MetOpen ‘ 𝐷 ) ) ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) |
11 |
9 10
|
bitri |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 = ( MetOpen ‘ 𝐷 ) ) ↔ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐽 = ( MetOpen ‘ 𝐷 ) ) ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) |
12 |
5 6 11
|
3bitr4i |
⊢ ( 𝐾 ∈ MetSp ↔ ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 = ( MetOpen ‘ 𝐷 ) ) ) |