Metamath Proof Explorer


Theorem ismtycnv

Description: The inverse of an isometry is an isometry. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion ismtycnv ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝑀 Ismty 𝑁 ) → 𝐹 ∈ ( 𝑁 Ismty 𝑀 ) ) )

Proof

Step Hyp Ref Expression
1 f1ocnv ( 𝐹 : 𝑋1-1-onto𝑌 𝐹 : 𝑌1-1-onto𝑋 )
2 1 adantr ( ( 𝐹 : 𝑋1-1-onto𝑌 ∧ ∀ 𝑥𝑋𝑦𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝐹𝑥 ) 𝑁 ( 𝐹𝑦 ) ) ) → 𝐹 : 𝑌1-1-onto𝑋 )
3 f1ocnvdm ( ( 𝐹 : 𝑋1-1-onto𝑌𝑢𝑌 ) → ( 𝐹𝑢 ) ∈ 𝑋 )
4 3 ex ( 𝐹 : 𝑋1-1-onto𝑌 → ( 𝑢𝑌 → ( 𝐹𝑢 ) ∈ 𝑋 ) )
5 f1ocnvdm ( ( 𝐹 : 𝑋1-1-onto𝑌𝑣𝑌 ) → ( 𝐹𝑣 ) ∈ 𝑋 )
6 5 ex ( 𝐹 : 𝑋1-1-onto𝑌 → ( 𝑣𝑌 → ( 𝐹𝑣 ) ∈ 𝑋 ) )
7 4 6 anim12d ( 𝐹 : 𝑋1-1-onto𝑌 → ( ( 𝑢𝑌𝑣𝑌 ) → ( ( 𝐹𝑢 ) ∈ 𝑋 ∧ ( 𝐹𝑣 ) ∈ 𝑋 ) ) )
8 7 adantr ( ( 𝐹 : 𝑋1-1-onto𝑌 ∧ ∀ 𝑥𝑋𝑦𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝐹𝑥 ) 𝑁 ( 𝐹𝑦 ) ) ) → ( ( 𝑢𝑌𝑣𝑌 ) → ( ( 𝐹𝑢 ) ∈ 𝑋 ∧ ( 𝐹𝑣 ) ∈ 𝑋 ) ) )
9 8 imdistani ( ( ( 𝐹 : 𝑋1-1-onto𝑌 ∧ ∀ 𝑥𝑋𝑦𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝐹𝑥 ) 𝑁 ( 𝐹𝑦 ) ) ) ∧ ( 𝑢𝑌𝑣𝑌 ) ) → ( ( 𝐹 : 𝑋1-1-onto𝑌 ∧ ∀ 𝑥𝑋𝑦𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝐹𝑥 ) 𝑁 ( 𝐹𝑦 ) ) ) ∧ ( ( 𝐹𝑢 ) ∈ 𝑋 ∧ ( 𝐹𝑣 ) ∈ 𝑋 ) ) )
10 oveq1 ( 𝑥 = ( 𝐹𝑢 ) → ( 𝑥 𝑀 𝑦 ) = ( ( 𝐹𝑢 ) 𝑀 𝑦 ) )
11 fveq2 ( 𝑥 = ( 𝐹𝑢 ) → ( 𝐹𝑥 ) = ( 𝐹 ‘ ( 𝐹𝑢 ) ) )
12 11 oveq1d ( 𝑥 = ( 𝐹𝑢 ) → ( ( 𝐹𝑥 ) 𝑁 ( 𝐹𝑦 ) ) = ( ( 𝐹 ‘ ( 𝐹𝑢 ) ) 𝑁 ( 𝐹𝑦 ) ) )
13 10 12 eqeq12d ( 𝑥 = ( 𝐹𝑢 ) → ( ( 𝑥 𝑀 𝑦 ) = ( ( 𝐹𝑥 ) 𝑁 ( 𝐹𝑦 ) ) ↔ ( ( 𝐹𝑢 ) 𝑀 𝑦 ) = ( ( 𝐹 ‘ ( 𝐹𝑢 ) ) 𝑁 ( 𝐹𝑦 ) ) ) )
14 oveq2 ( 𝑦 = ( 𝐹𝑣 ) → ( ( 𝐹𝑢 ) 𝑀 𝑦 ) = ( ( 𝐹𝑢 ) 𝑀 ( 𝐹𝑣 ) ) )
15 fveq2 ( 𝑦 = ( 𝐹𝑣 ) → ( 𝐹𝑦 ) = ( 𝐹 ‘ ( 𝐹𝑣 ) ) )
16 15 oveq2d ( 𝑦 = ( 𝐹𝑣 ) → ( ( 𝐹 ‘ ( 𝐹𝑢 ) ) 𝑁 ( 𝐹𝑦 ) ) = ( ( 𝐹 ‘ ( 𝐹𝑢 ) ) 𝑁 ( 𝐹 ‘ ( 𝐹𝑣 ) ) ) )
17 14 16 eqeq12d ( 𝑦 = ( 𝐹𝑣 ) → ( ( ( 𝐹𝑢 ) 𝑀 𝑦 ) = ( ( 𝐹 ‘ ( 𝐹𝑢 ) ) 𝑁 ( 𝐹𝑦 ) ) ↔ ( ( 𝐹𝑢 ) 𝑀 ( 𝐹𝑣 ) ) = ( ( 𝐹 ‘ ( 𝐹𝑢 ) ) 𝑁 ( 𝐹 ‘ ( 𝐹𝑣 ) ) ) ) )
18 13 17 rspc2v ( ( ( 𝐹𝑢 ) ∈ 𝑋 ∧ ( 𝐹𝑣 ) ∈ 𝑋 ) → ( ∀ 𝑥𝑋𝑦𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝐹𝑥 ) 𝑁 ( 𝐹𝑦 ) ) → ( ( 𝐹𝑢 ) 𝑀 ( 𝐹𝑣 ) ) = ( ( 𝐹 ‘ ( 𝐹𝑢 ) ) 𝑁 ( 𝐹 ‘ ( 𝐹𝑣 ) ) ) ) )
19 18 impcom ( ( ∀ 𝑥𝑋𝑦𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝐹𝑥 ) 𝑁 ( 𝐹𝑦 ) ) ∧ ( ( 𝐹𝑢 ) ∈ 𝑋 ∧ ( 𝐹𝑣 ) ∈ 𝑋 ) ) → ( ( 𝐹𝑢 ) 𝑀 ( 𝐹𝑣 ) ) = ( ( 𝐹 ‘ ( 𝐹𝑢 ) ) 𝑁 ( 𝐹 ‘ ( 𝐹𝑣 ) ) ) )
20 19 adantll ( ( ( 𝐹 : 𝑋1-1-onto𝑌 ∧ ∀ 𝑥𝑋𝑦𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝐹𝑥 ) 𝑁 ( 𝐹𝑦 ) ) ) ∧ ( ( 𝐹𝑢 ) ∈ 𝑋 ∧ ( 𝐹𝑣 ) ∈ 𝑋 ) ) → ( ( 𝐹𝑢 ) 𝑀 ( 𝐹𝑣 ) ) = ( ( 𝐹 ‘ ( 𝐹𝑢 ) ) 𝑁 ( 𝐹 ‘ ( 𝐹𝑣 ) ) ) )
21 9 20 syl ( ( ( 𝐹 : 𝑋1-1-onto𝑌 ∧ ∀ 𝑥𝑋𝑦𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝐹𝑥 ) 𝑁 ( 𝐹𝑦 ) ) ) ∧ ( 𝑢𝑌𝑣𝑌 ) ) → ( ( 𝐹𝑢 ) 𝑀 ( 𝐹𝑣 ) ) = ( ( 𝐹 ‘ ( 𝐹𝑢 ) ) 𝑁 ( 𝐹 ‘ ( 𝐹𝑣 ) ) ) )
22 f1ocnvfv2 ( ( 𝐹 : 𝑋1-1-onto𝑌𝑢𝑌 ) → ( 𝐹 ‘ ( 𝐹𝑢 ) ) = 𝑢 )
23 22 adantrr ( ( 𝐹 : 𝑋1-1-onto𝑌 ∧ ( 𝑢𝑌𝑣𝑌 ) ) → ( 𝐹 ‘ ( 𝐹𝑢 ) ) = 𝑢 )
24 f1ocnvfv2 ( ( 𝐹 : 𝑋1-1-onto𝑌𝑣𝑌 ) → ( 𝐹 ‘ ( 𝐹𝑣 ) ) = 𝑣 )
25 24 adantrl ( ( 𝐹 : 𝑋1-1-onto𝑌 ∧ ( 𝑢𝑌𝑣𝑌 ) ) → ( 𝐹 ‘ ( 𝐹𝑣 ) ) = 𝑣 )
26 23 25 oveq12d ( ( 𝐹 : 𝑋1-1-onto𝑌 ∧ ( 𝑢𝑌𝑣𝑌 ) ) → ( ( 𝐹 ‘ ( 𝐹𝑢 ) ) 𝑁 ( 𝐹 ‘ ( 𝐹𝑣 ) ) ) = ( 𝑢 𝑁 𝑣 ) )
27 26 adantlr ( ( ( 𝐹 : 𝑋1-1-onto𝑌 ∧ ∀ 𝑥𝑋𝑦𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝐹𝑥 ) 𝑁 ( 𝐹𝑦 ) ) ) ∧ ( 𝑢𝑌𝑣𝑌 ) ) → ( ( 𝐹 ‘ ( 𝐹𝑢 ) ) 𝑁 ( 𝐹 ‘ ( 𝐹𝑣 ) ) ) = ( 𝑢 𝑁 𝑣 ) )
28 21 27 eqtr2d ( ( ( 𝐹 : 𝑋1-1-onto𝑌 ∧ ∀ 𝑥𝑋𝑦𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝐹𝑥 ) 𝑁 ( 𝐹𝑦 ) ) ) ∧ ( 𝑢𝑌𝑣𝑌 ) ) → ( 𝑢 𝑁 𝑣 ) = ( ( 𝐹𝑢 ) 𝑀 ( 𝐹𝑣 ) ) )
29 28 ralrimivva ( ( 𝐹 : 𝑋1-1-onto𝑌 ∧ ∀ 𝑥𝑋𝑦𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝐹𝑥 ) 𝑁 ( 𝐹𝑦 ) ) ) → ∀ 𝑢𝑌𝑣𝑌 ( 𝑢 𝑁 𝑣 ) = ( ( 𝐹𝑢 ) 𝑀 ( 𝐹𝑣 ) ) )
30 2 29 jca ( ( 𝐹 : 𝑋1-1-onto𝑌 ∧ ∀ 𝑥𝑋𝑦𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝐹𝑥 ) 𝑁 ( 𝐹𝑦 ) ) ) → ( 𝐹 : 𝑌1-1-onto𝑋 ∧ ∀ 𝑢𝑌𝑣𝑌 ( 𝑢 𝑁 𝑣 ) = ( ( 𝐹𝑢 ) 𝑀 ( 𝐹𝑣 ) ) ) )
31 30 a1i ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) → ( ( 𝐹 : 𝑋1-1-onto𝑌 ∧ ∀ 𝑥𝑋𝑦𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝐹𝑥 ) 𝑁 ( 𝐹𝑦 ) ) ) → ( 𝐹 : 𝑌1-1-onto𝑋 ∧ ∀ 𝑢𝑌𝑣𝑌 ( 𝑢 𝑁 𝑣 ) = ( ( 𝐹𝑢 ) 𝑀 ( 𝐹𝑣 ) ) ) ) )
32 isismty ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝑀 Ismty 𝑁 ) ↔ ( 𝐹 : 𝑋1-1-onto𝑌 ∧ ∀ 𝑥𝑋𝑦𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝐹𝑥 ) 𝑁 ( 𝐹𝑦 ) ) ) ) )
33 isismty ( ( 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ) → ( 𝐹 ∈ ( 𝑁 Ismty 𝑀 ) ↔ ( 𝐹 : 𝑌1-1-onto𝑋 ∧ ∀ 𝑢𝑌𝑣𝑌 ( 𝑢 𝑁 𝑣 ) = ( ( 𝐹𝑢 ) 𝑀 ( 𝐹𝑣 ) ) ) ) )
34 33 ancoms ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝑁 Ismty 𝑀 ) ↔ ( 𝐹 : 𝑌1-1-onto𝑋 ∧ ∀ 𝑢𝑌𝑣𝑌 ( 𝑢 𝑁 𝑣 ) = ( ( 𝐹𝑢 ) 𝑀 ( 𝐹𝑣 ) ) ) ) )
35 31 32 34 3imtr4d ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝑀 Ismty 𝑁 ) → 𝐹 ∈ ( 𝑁 Ismty 𝑀 ) ) )