Step |
Hyp |
Ref |
Expression |
1 |
|
f1ocnv |
⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → ◡ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) |
2 |
1
|
adantr |
⊢ ( ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) ) → ◡ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) |
3 |
|
f1ocnvdm |
⊢ ( ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ 𝑢 ∈ 𝑌 ) → ( ◡ 𝐹 ‘ 𝑢 ) ∈ 𝑋 ) |
4 |
3
|
ex |
⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → ( 𝑢 ∈ 𝑌 → ( ◡ 𝐹 ‘ 𝑢 ) ∈ 𝑋 ) ) |
5 |
|
f1ocnvdm |
⊢ ( ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ 𝑣 ∈ 𝑌 ) → ( ◡ 𝐹 ‘ 𝑣 ) ∈ 𝑋 ) |
6 |
5
|
ex |
⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → ( 𝑣 ∈ 𝑌 → ( ◡ 𝐹 ‘ 𝑣 ) ∈ 𝑋 ) ) |
7 |
4 6
|
anim12d |
⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → ( ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) → ( ( ◡ 𝐹 ‘ 𝑢 ) ∈ 𝑋 ∧ ( ◡ 𝐹 ‘ 𝑣 ) ∈ 𝑋 ) ) ) |
8 |
7
|
adantr |
⊢ ( ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) ) → ( ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) → ( ( ◡ 𝐹 ‘ 𝑢 ) ∈ 𝑋 ∧ ( ◡ 𝐹 ‘ 𝑣 ) ∈ 𝑋 ) ) ) |
9 |
8
|
imdistani |
⊢ ( ( ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) ) → ( ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( ( ◡ 𝐹 ‘ 𝑢 ) ∈ 𝑋 ∧ ( ◡ 𝐹 ‘ 𝑣 ) ∈ 𝑋 ) ) ) |
10 |
|
oveq1 |
⊢ ( 𝑥 = ( ◡ 𝐹 ‘ 𝑢 ) → ( 𝑥 𝑀 𝑦 ) = ( ( ◡ 𝐹 ‘ 𝑢 ) 𝑀 𝑦 ) ) |
11 |
|
fveq2 |
⊢ ( 𝑥 = ( ◡ 𝐹 ‘ 𝑢 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ) |
12 |
11
|
oveq1d |
⊢ ( 𝑥 = ( ◡ 𝐹 ‘ 𝑢 ) → ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) ) |
13 |
10 12
|
eqeq12d |
⊢ ( 𝑥 = ( ◡ 𝐹 ‘ 𝑢 ) → ( ( 𝑥 𝑀 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) ↔ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝑀 𝑦 ) = ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) ) ) |
14 |
|
oveq2 |
⊢ ( 𝑦 = ( ◡ 𝐹 ‘ 𝑣 ) → ( ( ◡ 𝐹 ‘ 𝑢 ) 𝑀 𝑦 ) = ( ( ◡ 𝐹 ‘ 𝑢 ) 𝑀 ( ◡ 𝐹 ‘ 𝑣 ) ) ) |
15 |
|
fveq2 |
⊢ ( 𝑦 = ( ◡ 𝐹 ‘ 𝑣 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) ) |
16 |
15
|
oveq2d |
⊢ ( 𝑦 = ( ◡ 𝐹 ‘ 𝑣 ) → ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) 𝑁 ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) ) ) |
17 |
14 16
|
eqeq12d |
⊢ ( 𝑦 = ( ◡ 𝐹 ‘ 𝑣 ) → ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝑀 𝑦 ) = ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) ↔ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝑀 ( ◡ 𝐹 ‘ 𝑣 ) ) = ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) 𝑁 ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) ) ) ) |
18 |
13 17
|
rspc2v |
⊢ ( ( ( ◡ 𝐹 ‘ 𝑢 ) ∈ 𝑋 ∧ ( ◡ 𝐹 ‘ 𝑣 ) ∈ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) → ( ( ◡ 𝐹 ‘ 𝑢 ) 𝑀 ( ◡ 𝐹 ‘ 𝑣 ) ) = ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) 𝑁 ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) ) ) ) |
19 |
18
|
impcom |
⊢ ( ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) ∧ ( ( ◡ 𝐹 ‘ 𝑢 ) ∈ 𝑋 ∧ ( ◡ 𝐹 ‘ 𝑣 ) ∈ 𝑋 ) ) → ( ( ◡ 𝐹 ‘ 𝑢 ) 𝑀 ( ◡ 𝐹 ‘ 𝑣 ) ) = ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) 𝑁 ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) ) ) |
20 |
19
|
adantll |
⊢ ( ( ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( ( ◡ 𝐹 ‘ 𝑢 ) ∈ 𝑋 ∧ ( ◡ 𝐹 ‘ 𝑣 ) ∈ 𝑋 ) ) → ( ( ◡ 𝐹 ‘ 𝑢 ) 𝑀 ( ◡ 𝐹 ‘ 𝑣 ) ) = ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) 𝑁 ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) ) ) |
21 |
9 20
|
syl |
⊢ ( ( ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) ) → ( ( ◡ 𝐹 ‘ 𝑢 ) 𝑀 ( ◡ 𝐹 ‘ 𝑣 ) ) = ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) 𝑁 ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) ) ) |
22 |
|
f1ocnvfv2 |
⊢ ( ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ 𝑢 ∈ 𝑌 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) = 𝑢 ) |
23 |
22
|
adantrr |
⊢ ( ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) = 𝑢 ) |
24 |
|
f1ocnvfv2 |
⊢ ( ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ 𝑣 ∈ 𝑌 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) = 𝑣 ) |
25 |
24
|
adantrl |
⊢ ( ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) = 𝑣 ) |
26 |
23 25
|
oveq12d |
⊢ ( ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) ) → ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) 𝑁 ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) ) = ( 𝑢 𝑁 𝑣 ) ) |
27 |
26
|
adantlr |
⊢ ( ( ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) ) → ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) 𝑁 ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) ) = ( 𝑢 𝑁 𝑣 ) ) |
28 |
21 27
|
eqtr2d |
⊢ ( ( ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) ) → ( 𝑢 𝑁 𝑣 ) = ( ( ◡ 𝐹 ‘ 𝑢 ) 𝑀 ( ◡ 𝐹 ‘ 𝑣 ) ) ) |
29 |
28
|
ralrimivva |
⊢ ( ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) ) → ∀ 𝑢 ∈ 𝑌 ∀ 𝑣 ∈ 𝑌 ( 𝑢 𝑁 𝑣 ) = ( ( ◡ 𝐹 ‘ 𝑢 ) 𝑀 ( ◡ 𝐹 ‘ 𝑣 ) ) ) |
30 |
2 29
|
jca |
⊢ ( ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) ) → ( ◡ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ∧ ∀ 𝑢 ∈ 𝑌 ∀ 𝑣 ∈ 𝑌 ( 𝑢 𝑁 𝑣 ) = ( ( ◡ 𝐹 ‘ 𝑢 ) 𝑀 ( ◡ 𝐹 ‘ 𝑣 ) ) ) ) |
31 |
30
|
a1i |
⊢ ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) → ( ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) ) → ( ◡ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ∧ ∀ 𝑢 ∈ 𝑌 ∀ 𝑣 ∈ 𝑌 ( 𝑢 𝑁 𝑣 ) = ( ( ◡ 𝐹 ‘ 𝑢 ) 𝑀 ( ◡ 𝐹 ‘ 𝑣 ) ) ) ) ) |
32 |
|
isismty |
⊢ ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝑀 Ismty 𝑁 ) ↔ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
33 |
|
isismty |
⊢ ( ( 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ) → ( ◡ 𝐹 ∈ ( 𝑁 Ismty 𝑀 ) ↔ ( ◡ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ∧ ∀ 𝑢 ∈ 𝑌 ∀ 𝑣 ∈ 𝑌 ( 𝑢 𝑁 𝑣 ) = ( ( ◡ 𝐹 ‘ 𝑢 ) 𝑀 ( ◡ 𝐹 ‘ 𝑣 ) ) ) ) ) |
34 |
33
|
ancoms |
⊢ ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) → ( ◡ 𝐹 ∈ ( 𝑁 Ismty 𝑀 ) ↔ ( ◡ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ∧ ∀ 𝑢 ∈ 𝑌 ∀ 𝑣 ∈ 𝑌 ( 𝑢 𝑁 𝑣 ) = ( ( ◡ 𝐹 ‘ 𝑢 ) 𝑀 ( ◡ 𝐹 ‘ 𝑣 ) ) ) ) ) |
35 |
31 32 34
|
3imtr4d |
⊢ ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝑀 Ismty 𝑁 ) → ◡ 𝐹 ∈ ( 𝑁 Ismty 𝑀 ) ) ) |