Step |
Hyp |
Ref |
Expression |
1 |
|
ismtyres.2 |
⊢ 𝐵 = ( 𝐹 “ 𝐴 ) |
2 |
|
ismtyres.3 |
⊢ 𝑆 = ( 𝑀 ↾ ( 𝐴 × 𝐴 ) ) |
3 |
|
ismtyres.4 |
⊢ 𝑇 = ( 𝑁 ↾ ( 𝐵 × 𝐵 ) ) |
4 |
|
isismty |
⊢ ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝑀 Ismty 𝑁 ) ↔ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
5 |
4
|
simprbda |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ 𝐹 ∈ ( 𝑀 Ismty 𝑁 ) ) → 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) |
6 |
5
|
adantrr |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝐹 ∈ ( 𝑀 Ismty 𝑁 ) ∧ 𝐴 ⊆ 𝑋 ) ) → 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) |
7 |
|
f1of1 |
⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → 𝐹 : 𝑋 –1-1→ 𝑌 ) |
8 |
6 7
|
syl |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝐹 ∈ ( 𝑀 Ismty 𝑁 ) ∧ 𝐴 ⊆ 𝑋 ) ) → 𝐹 : 𝑋 –1-1→ 𝑌 ) |
9 |
|
simprr |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝐹 ∈ ( 𝑀 Ismty 𝑁 ) ∧ 𝐴 ⊆ 𝑋 ) ) → 𝐴 ⊆ 𝑋 ) |
10 |
|
f1ores |
⊢ ( ( 𝐹 : 𝑋 –1-1→ 𝑌 ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐹 ↾ 𝐴 ) : 𝐴 –1-1-onto→ ( 𝐹 “ 𝐴 ) ) |
11 |
8 9 10
|
syl2anc |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝐹 ∈ ( 𝑀 Ismty 𝑁 ) ∧ 𝐴 ⊆ 𝑋 ) ) → ( 𝐹 ↾ 𝐴 ) : 𝐴 –1-1-onto→ ( 𝐹 “ 𝐴 ) ) |
12 |
4
|
biimpa |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ 𝐹 ∈ ( 𝑀 Ismty 𝑁 ) ) → ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) ) ) |
13 |
12
|
adantrr |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝐹 ∈ ( 𝑀 Ismty 𝑁 ) ∧ 𝐴 ⊆ 𝑋 ) ) → ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) ) ) |
14 |
|
ssel |
⊢ ( 𝐴 ⊆ 𝑋 → ( 𝑢 ∈ 𝐴 → 𝑢 ∈ 𝑋 ) ) |
15 |
|
ssel |
⊢ ( 𝐴 ⊆ 𝑋 → ( 𝑣 ∈ 𝐴 → 𝑣 ∈ 𝑋 ) ) |
16 |
14 15
|
anim12d |
⊢ ( 𝐴 ⊆ 𝑋 → ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) → ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) ) |
17 |
16
|
imp |
⊢ ( ( 𝐴 ⊆ 𝑋 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) → ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) |
18 |
|
oveq1 |
⊢ ( 𝑥 = 𝑢 → ( 𝑥 𝑀 𝑦 ) = ( 𝑢 𝑀 𝑦 ) ) |
19 |
|
fveq2 |
⊢ ( 𝑥 = 𝑢 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑢 ) ) |
20 |
19
|
oveq1d |
⊢ ( 𝑥 = 𝑢 → ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑢 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) ) |
21 |
18 20
|
eqeq12d |
⊢ ( 𝑥 = 𝑢 → ( ( 𝑥 𝑀 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑢 𝑀 𝑦 ) = ( ( 𝐹 ‘ 𝑢 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) ) ) |
22 |
|
oveq2 |
⊢ ( 𝑦 = 𝑣 → ( 𝑢 𝑀 𝑦 ) = ( 𝑢 𝑀 𝑣 ) ) |
23 |
|
fveq2 |
⊢ ( 𝑦 = 𝑣 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑣 ) ) |
24 |
23
|
oveq2d |
⊢ ( 𝑦 = 𝑣 → ( ( 𝐹 ‘ 𝑢 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑢 ) 𝑁 ( 𝐹 ‘ 𝑣 ) ) ) |
25 |
22 24
|
eqeq12d |
⊢ ( 𝑦 = 𝑣 → ( ( 𝑢 𝑀 𝑦 ) = ( ( 𝐹 ‘ 𝑢 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑢 𝑀 𝑣 ) = ( ( 𝐹 ‘ 𝑢 ) 𝑁 ( 𝐹 ‘ 𝑣 ) ) ) ) |
26 |
21 25
|
rspc2v |
⊢ ( ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) → ( 𝑢 𝑀 𝑣 ) = ( ( 𝐹 ‘ 𝑢 ) 𝑁 ( 𝐹 ‘ 𝑣 ) ) ) ) |
27 |
17 26
|
syl |
⊢ ( ( 𝐴 ⊆ 𝑋 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) → ( 𝑢 𝑀 𝑣 ) = ( ( 𝐹 ‘ 𝑢 ) 𝑁 ( 𝐹 ‘ 𝑣 ) ) ) ) |
28 |
27
|
imp |
⊢ ( ( ( 𝐴 ⊆ 𝑋 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝑢 𝑀 𝑣 ) = ( ( 𝐹 ‘ 𝑢 ) 𝑁 ( 𝐹 ‘ 𝑣 ) ) ) |
29 |
28
|
an32s |
⊢ ( ( ( 𝐴 ⊆ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) → ( 𝑢 𝑀 𝑣 ) = ( ( 𝐹 ‘ 𝑢 ) 𝑁 ( 𝐹 ‘ 𝑣 ) ) ) |
30 |
29
|
adantlrl |
⊢ ( ( ( 𝐴 ⊆ 𝑋 ∧ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) ) ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) → ( 𝑢 𝑀 𝑣 ) = ( ( 𝐹 ‘ 𝑢 ) 𝑁 ( 𝐹 ‘ 𝑣 ) ) ) |
31 |
30
|
adantlll |
⊢ ( ( ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) ) ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) → ( 𝑢 𝑀 𝑣 ) = ( ( 𝐹 ‘ 𝑢 ) 𝑁 ( 𝐹 ‘ 𝑣 ) ) ) |
32 |
2
|
oveqi |
⊢ ( 𝑢 𝑆 𝑣 ) = ( 𝑢 ( 𝑀 ↾ ( 𝐴 × 𝐴 ) ) 𝑣 ) |
33 |
|
ovres |
⊢ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) → ( 𝑢 ( 𝑀 ↾ ( 𝐴 × 𝐴 ) ) 𝑣 ) = ( 𝑢 𝑀 𝑣 ) ) |
34 |
32 33
|
syl5eq |
⊢ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) → ( 𝑢 𝑆 𝑣 ) = ( 𝑢 𝑀 𝑣 ) ) |
35 |
34
|
adantl |
⊢ ( ( ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) ) ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) → ( 𝑢 𝑆 𝑣 ) = ( 𝑢 𝑀 𝑣 ) ) |
36 |
|
fvres |
⊢ ( 𝑢 ∈ 𝐴 → ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑢 ) = ( 𝐹 ‘ 𝑢 ) ) |
37 |
36
|
ad2antrl |
⊢ ( ( ( 𝐴 ⊆ 𝑋 ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) → ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑢 ) = ( 𝐹 ‘ 𝑢 ) ) |
38 |
|
fvres |
⊢ ( 𝑣 ∈ 𝐴 → ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑣 ) = ( 𝐹 ‘ 𝑣 ) ) |
39 |
38
|
ad2antll |
⊢ ( ( ( 𝐴 ⊆ 𝑋 ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) → ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑣 ) = ( 𝐹 ‘ 𝑣 ) ) |
40 |
37 39
|
oveq12d |
⊢ ( ( ( 𝐴 ⊆ 𝑋 ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) → ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑢 ) 𝑇 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑣 ) ) = ( ( 𝐹 ‘ 𝑢 ) 𝑇 ( 𝐹 ‘ 𝑣 ) ) ) |
41 |
3
|
oveqi |
⊢ ( ( 𝐹 ‘ 𝑢 ) 𝑇 ( 𝐹 ‘ 𝑣 ) ) = ( ( 𝐹 ‘ 𝑢 ) ( 𝑁 ↾ ( 𝐵 × 𝐵 ) ) ( 𝐹 ‘ 𝑣 ) ) |
42 |
|
f1ofun |
⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → Fun 𝐹 ) |
43 |
42
|
adantl |
⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) → Fun 𝐹 ) |
44 |
|
f1odm |
⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → dom 𝐹 = 𝑋 ) |
45 |
44
|
sseq2d |
⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → ( 𝐴 ⊆ dom 𝐹 ↔ 𝐴 ⊆ 𝑋 ) ) |
46 |
45
|
biimparc |
⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) → 𝐴 ⊆ dom 𝐹 ) |
47 |
|
funfvima2 |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) → ( 𝑢 ∈ 𝐴 → ( 𝐹 ‘ 𝑢 ) ∈ ( 𝐹 “ 𝐴 ) ) ) |
48 |
43 46 47
|
syl2anc |
⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) → ( 𝑢 ∈ 𝐴 → ( 𝐹 ‘ 𝑢 ) ∈ ( 𝐹 “ 𝐴 ) ) ) |
49 |
48
|
imp |
⊢ ( ( ( 𝐴 ⊆ 𝑋 ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑢 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑢 ) ∈ ( 𝐹 “ 𝐴 ) ) |
50 |
49 1
|
eleqtrrdi |
⊢ ( ( ( 𝐴 ⊆ 𝑋 ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑢 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑢 ) ∈ 𝐵 ) |
51 |
50
|
adantrr |
⊢ ( ( ( 𝐴 ⊆ 𝑋 ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) → ( 𝐹 ‘ 𝑢 ) ∈ 𝐵 ) |
52 |
|
funfvima2 |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) → ( 𝑣 ∈ 𝐴 → ( 𝐹 ‘ 𝑣 ) ∈ ( 𝐹 “ 𝐴 ) ) ) |
53 |
43 46 52
|
syl2anc |
⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) → ( 𝑣 ∈ 𝐴 → ( 𝐹 ‘ 𝑣 ) ∈ ( 𝐹 “ 𝐴 ) ) ) |
54 |
53
|
imp |
⊢ ( ( ( 𝐴 ⊆ 𝑋 ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑣 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑣 ) ∈ ( 𝐹 “ 𝐴 ) ) |
55 |
54 1
|
eleqtrrdi |
⊢ ( ( ( 𝐴 ⊆ 𝑋 ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑣 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑣 ) ∈ 𝐵 ) |
56 |
55
|
adantrl |
⊢ ( ( ( 𝐴 ⊆ 𝑋 ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) → ( 𝐹 ‘ 𝑣 ) ∈ 𝐵 ) |
57 |
51 56
|
ovresd |
⊢ ( ( ( 𝐴 ⊆ 𝑋 ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑢 ) ( 𝑁 ↾ ( 𝐵 × 𝐵 ) ) ( 𝐹 ‘ 𝑣 ) ) = ( ( 𝐹 ‘ 𝑢 ) 𝑁 ( 𝐹 ‘ 𝑣 ) ) ) |
58 |
41 57
|
syl5eq |
⊢ ( ( ( 𝐴 ⊆ 𝑋 ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑢 ) 𝑇 ( 𝐹 ‘ 𝑣 ) ) = ( ( 𝐹 ‘ 𝑢 ) 𝑁 ( 𝐹 ‘ 𝑣 ) ) ) |
59 |
40 58
|
eqtrd |
⊢ ( ( ( 𝐴 ⊆ 𝑋 ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) → ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑢 ) 𝑇 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑣 ) ) = ( ( 𝐹 ‘ 𝑢 ) 𝑁 ( 𝐹 ‘ 𝑣 ) ) ) |
60 |
59
|
adantlrr |
⊢ ( ( ( 𝐴 ⊆ 𝑋 ∧ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) ) ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) → ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑢 ) 𝑇 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑣 ) ) = ( ( 𝐹 ‘ 𝑢 ) 𝑁 ( 𝐹 ‘ 𝑣 ) ) ) |
61 |
60
|
adantlll |
⊢ ( ( ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) ) ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) → ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑢 ) 𝑇 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑣 ) ) = ( ( 𝐹 ‘ 𝑢 ) 𝑁 ( 𝐹 ‘ 𝑣 ) ) ) |
62 |
31 35 61
|
3eqtr4d |
⊢ ( ( ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) ) ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) → ( 𝑢 𝑆 𝑣 ) = ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑢 ) 𝑇 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑣 ) ) ) |
63 |
62
|
ralrimivva |
⊢ ( ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) ) ) → ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 𝑆 𝑣 ) = ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑢 ) 𝑇 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑣 ) ) ) |
64 |
63
|
adantlrl |
⊢ ( ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝐹 ∈ ( 𝑀 Ismty 𝑁 ) ∧ 𝐴 ⊆ 𝑋 ) ) ∧ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) ) ) → ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 𝑆 𝑣 ) = ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑢 ) 𝑇 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑣 ) ) ) |
65 |
13 64
|
mpdan |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝐹 ∈ ( 𝑀 Ismty 𝑁 ) ∧ 𝐴 ⊆ 𝑋 ) ) → ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 𝑆 𝑣 ) = ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑢 ) 𝑇 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑣 ) ) ) |
66 |
|
xmetres2 |
⊢ ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝑀 ↾ ( 𝐴 × 𝐴 ) ) ∈ ( ∞Met ‘ 𝐴 ) ) |
67 |
2 66
|
eqeltrid |
⊢ ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → 𝑆 ∈ ( ∞Met ‘ 𝐴 ) ) |
68 |
67
|
ad2ant2rl |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝐹 ∈ ( 𝑀 Ismty 𝑁 ) ∧ 𝐴 ⊆ 𝑋 ) ) → 𝑆 ∈ ( ∞Met ‘ 𝐴 ) ) |
69 |
|
simplr |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝐹 ∈ ( 𝑀 Ismty 𝑁 ) ∧ 𝐴 ⊆ 𝑋 ) ) → 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) |
70 |
|
imassrn |
⊢ ( 𝐹 “ 𝐴 ) ⊆ ran 𝐹 |
71 |
1 70
|
eqsstri |
⊢ 𝐵 ⊆ ran 𝐹 |
72 |
|
f1ofo |
⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → 𝐹 : 𝑋 –onto→ 𝑌 ) |
73 |
|
forn |
⊢ ( 𝐹 : 𝑋 –onto→ 𝑌 → ran 𝐹 = 𝑌 ) |
74 |
6 72 73
|
3syl |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝐹 ∈ ( 𝑀 Ismty 𝑁 ) ∧ 𝐴 ⊆ 𝑋 ) ) → ran 𝐹 = 𝑌 ) |
75 |
71 74
|
sseqtrid |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝐹 ∈ ( 𝑀 Ismty 𝑁 ) ∧ 𝐴 ⊆ 𝑋 ) ) → 𝐵 ⊆ 𝑌 ) |
76 |
|
xmetres2 |
⊢ ( ( 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝐵 ⊆ 𝑌 ) → ( 𝑁 ↾ ( 𝐵 × 𝐵 ) ) ∈ ( ∞Met ‘ 𝐵 ) ) |
77 |
69 75 76
|
syl2anc |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝐹 ∈ ( 𝑀 Ismty 𝑁 ) ∧ 𝐴 ⊆ 𝑋 ) ) → ( 𝑁 ↾ ( 𝐵 × 𝐵 ) ) ∈ ( ∞Met ‘ 𝐵 ) ) |
78 |
3 77
|
eqeltrid |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝐹 ∈ ( 𝑀 Ismty 𝑁 ) ∧ 𝐴 ⊆ 𝑋 ) ) → 𝑇 ∈ ( ∞Met ‘ 𝐵 ) ) |
79 |
1
|
fveq2i |
⊢ ( ∞Met ‘ 𝐵 ) = ( ∞Met ‘ ( 𝐹 “ 𝐴 ) ) |
80 |
78 79
|
eleqtrdi |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝐹 ∈ ( 𝑀 Ismty 𝑁 ) ∧ 𝐴 ⊆ 𝑋 ) ) → 𝑇 ∈ ( ∞Met ‘ ( 𝐹 “ 𝐴 ) ) ) |
81 |
|
isismty |
⊢ ( ( 𝑆 ∈ ( ∞Met ‘ 𝐴 ) ∧ 𝑇 ∈ ( ∞Met ‘ ( 𝐹 “ 𝐴 ) ) ) → ( ( 𝐹 ↾ 𝐴 ) ∈ ( 𝑆 Ismty 𝑇 ) ↔ ( ( 𝐹 ↾ 𝐴 ) : 𝐴 –1-1-onto→ ( 𝐹 “ 𝐴 ) ∧ ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 𝑆 𝑣 ) = ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑢 ) 𝑇 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑣 ) ) ) ) ) |
82 |
68 80 81
|
syl2anc |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝐹 ∈ ( 𝑀 Ismty 𝑁 ) ∧ 𝐴 ⊆ 𝑋 ) ) → ( ( 𝐹 ↾ 𝐴 ) ∈ ( 𝑆 Ismty 𝑇 ) ↔ ( ( 𝐹 ↾ 𝐴 ) : 𝐴 –1-1-onto→ ( 𝐹 “ 𝐴 ) ∧ ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 𝑆 𝑣 ) = ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑢 ) 𝑇 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑣 ) ) ) ) ) |
83 |
11 65 82
|
mpbir2and |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝐹 ∈ ( 𝑀 Ismty 𝑁 ) ∧ 𝐴 ⊆ 𝑋 ) ) → ( 𝐹 ↾ 𝐴 ) ∈ ( 𝑆 Ismty 𝑇 ) ) |