Step |
Hyp |
Ref |
Expression |
1 |
|
df-ismty |
⊢ Ismty = ( 𝑚 ∈ ∪ ran ∞Met , 𝑛 ∈ ∪ ran ∞Met ↦ { 𝑓 ∣ ( 𝑓 : dom dom 𝑚 –1-1-onto→ dom dom 𝑛 ∧ ∀ 𝑥 ∈ dom dom 𝑚 ∀ 𝑦 ∈ dom dom 𝑚 ( 𝑥 𝑚 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) 𝑛 ( 𝑓 ‘ 𝑦 ) ) ) } ) |
2 |
1
|
a1i |
⊢ ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) → Ismty = ( 𝑚 ∈ ∪ ran ∞Met , 𝑛 ∈ ∪ ran ∞Met ↦ { 𝑓 ∣ ( 𝑓 : dom dom 𝑚 –1-1-onto→ dom dom 𝑛 ∧ ∀ 𝑥 ∈ dom dom 𝑚 ∀ 𝑦 ∈ dom dom 𝑚 ( 𝑥 𝑚 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) 𝑛 ( 𝑓 ‘ 𝑦 ) ) ) } ) ) |
3 |
|
dmeq |
⊢ ( 𝑚 = 𝑀 → dom 𝑚 = dom 𝑀 ) |
4 |
|
xmetf |
⊢ ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) → 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ) |
5 |
4
|
fdmd |
⊢ ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) → dom 𝑀 = ( 𝑋 × 𝑋 ) ) |
6 |
3 5
|
sylan9eqr |
⊢ ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑚 = 𝑀 ) → dom 𝑚 = ( 𝑋 × 𝑋 ) ) |
7 |
6
|
ad2ant2r |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝑚 = 𝑀 ∧ 𝑛 = 𝑁 ) ) → dom 𝑚 = ( 𝑋 × 𝑋 ) ) |
8 |
7
|
dmeqd |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝑚 = 𝑀 ∧ 𝑛 = 𝑁 ) ) → dom dom 𝑚 = dom ( 𝑋 × 𝑋 ) ) |
9 |
|
dmxpid |
⊢ dom ( 𝑋 × 𝑋 ) = 𝑋 |
10 |
8 9
|
eqtrdi |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝑚 = 𝑀 ∧ 𝑛 = 𝑁 ) ) → dom dom 𝑚 = 𝑋 ) |
11 |
10
|
f1oeq2d |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝑚 = 𝑀 ∧ 𝑛 = 𝑁 ) ) → ( 𝑓 : dom dom 𝑚 –1-1-onto→ dom dom 𝑛 ↔ 𝑓 : 𝑋 –1-1-onto→ dom dom 𝑛 ) ) |
12 |
|
dmeq |
⊢ ( 𝑛 = 𝑁 → dom 𝑛 = dom 𝑁 ) |
13 |
|
xmetf |
⊢ ( 𝑁 ∈ ( ∞Met ‘ 𝑌 ) → 𝑁 : ( 𝑌 × 𝑌 ) ⟶ ℝ* ) |
14 |
13
|
fdmd |
⊢ ( 𝑁 ∈ ( ∞Met ‘ 𝑌 ) → dom 𝑁 = ( 𝑌 × 𝑌 ) ) |
15 |
12 14
|
sylan9eqr |
⊢ ( ( 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑛 = 𝑁 ) → dom 𝑛 = ( 𝑌 × 𝑌 ) ) |
16 |
15
|
ad2ant2l |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝑚 = 𝑀 ∧ 𝑛 = 𝑁 ) ) → dom 𝑛 = ( 𝑌 × 𝑌 ) ) |
17 |
16
|
dmeqd |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝑚 = 𝑀 ∧ 𝑛 = 𝑁 ) ) → dom dom 𝑛 = dom ( 𝑌 × 𝑌 ) ) |
18 |
|
dmxpid |
⊢ dom ( 𝑌 × 𝑌 ) = 𝑌 |
19 |
17 18
|
eqtrdi |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝑚 = 𝑀 ∧ 𝑛 = 𝑁 ) ) → dom dom 𝑛 = 𝑌 ) |
20 |
|
f1oeq3 |
⊢ ( dom dom 𝑛 = 𝑌 → ( 𝑓 : 𝑋 –1-1-onto→ dom dom 𝑛 ↔ 𝑓 : 𝑋 –1-1-onto→ 𝑌 ) ) |
21 |
19 20
|
syl |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝑚 = 𝑀 ∧ 𝑛 = 𝑁 ) ) → ( 𝑓 : 𝑋 –1-1-onto→ dom dom 𝑛 ↔ 𝑓 : 𝑋 –1-1-onto→ 𝑌 ) ) |
22 |
11 21
|
bitrd |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝑚 = 𝑀 ∧ 𝑛 = 𝑁 ) ) → ( 𝑓 : dom dom 𝑚 –1-1-onto→ dom dom 𝑛 ↔ 𝑓 : 𝑋 –1-1-onto→ 𝑌 ) ) |
23 |
|
oveq |
⊢ ( 𝑚 = 𝑀 → ( 𝑥 𝑚 𝑦 ) = ( 𝑥 𝑀 𝑦 ) ) |
24 |
|
oveq |
⊢ ( 𝑛 = 𝑁 → ( ( 𝑓 ‘ 𝑥 ) 𝑛 ( 𝑓 ‘ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) 𝑁 ( 𝑓 ‘ 𝑦 ) ) ) |
25 |
23 24
|
eqeqan12d |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑛 = 𝑁 ) → ( ( 𝑥 𝑚 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) 𝑛 ( 𝑓 ‘ 𝑦 ) ) ↔ ( 𝑥 𝑀 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) 𝑁 ( 𝑓 ‘ 𝑦 ) ) ) ) |
26 |
25
|
adantl |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝑚 = 𝑀 ∧ 𝑛 = 𝑁 ) ) → ( ( 𝑥 𝑚 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) 𝑛 ( 𝑓 ‘ 𝑦 ) ) ↔ ( 𝑥 𝑀 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) 𝑁 ( 𝑓 ‘ 𝑦 ) ) ) ) |
27 |
10 26
|
raleqbidv |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝑚 = 𝑀 ∧ 𝑛 = 𝑁 ) ) → ( ∀ 𝑦 ∈ dom dom 𝑚 ( 𝑥 𝑚 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) 𝑛 ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) 𝑁 ( 𝑓 ‘ 𝑦 ) ) ) ) |
28 |
10 27
|
raleqbidv |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝑚 = 𝑀 ∧ 𝑛 = 𝑁 ) ) → ( ∀ 𝑥 ∈ dom dom 𝑚 ∀ 𝑦 ∈ dom dom 𝑚 ( 𝑥 𝑚 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) 𝑛 ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) 𝑁 ( 𝑓 ‘ 𝑦 ) ) ) ) |
29 |
22 28
|
anbi12d |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝑚 = 𝑀 ∧ 𝑛 = 𝑁 ) ) → ( ( 𝑓 : dom dom 𝑚 –1-1-onto→ dom dom 𝑛 ∧ ∀ 𝑥 ∈ dom dom 𝑚 ∀ 𝑦 ∈ dom dom 𝑚 ( 𝑥 𝑚 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) 𝑛 ( 𝑓 ‘ 𝑦 ) ) ) ↔ ( 𝑓 : 𝑋 –1-1-onto→ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) 𝑁 ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
30 |
29
|
abbidv |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝑚 = 𝑀 ∧ 𝑛 = 𝑁 ) ) → { 𝑓 ∣ ( 𝑓 : dom dom 𝑚 –1-1-onto→ dom dom 𝑛 ∧ ∀ 𝑥 ∈ dom dom 𝑚 ∀ 𝑦 ∈ dom dom 𝑚 ( 𝑥 𝑚 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) 𝑛 ( 𝑓 ‘ 𝑦 ) ) ) } = { 𝑓 ∣ ( 𝑓 : 𝑋 –1-1-onto→ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) 𝑁 ( 𝑓 ‘ 𝑦 ) ) ) } ) |
31 |
|
fvssunirn |
⊢ ( ∞Met ‘ 𝑋 ) ⊆ ∪ ran ∞Met |
32 |
|
simpl |
⊢ ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) → 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ) |
33 |
31 32
|
sselid |
⊢ ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) → 𝑀 ∈ ∪ ran ∞Met ) |
34 |
|
fvssunirn |
⊢ ( ∞Met ‘ 𝑌 ) ⊆ ∪ ran ∞Met |
35 |
|
simpr |
⊢ ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) → 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) |
36 |
34 35
|
sselid |
⊢ ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) → 𝑁 ∈ ∪ ran ∞Met ) |
37 |
|
f1of |
⊢ ( 𝑓 : 𝑋 –1-1-onto→ 𝑌 → 𝑓 : 𝑋 ⟶ 𝑌 ) |
38 |
37
|
adantr |
⊢ ( ( 𝑓 : 𝑋 –1-1-onto→ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) 𝑁 ( 𝑓 ‘ 𝑦 ) ) ) → 𝑓 : 𝑋 ⟶ 𝑌 ) |
39 |
|
elfvdm |
⊢ ( 𝑁 ∈ ( ∞Met ‘ 𝑌 ) → 𝑌 ∈ dom ∞Met ) |
40 |
|
elfvdm |
⊢ ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 ∈ dom ∞Met ) |
41 |
|
elmapg |
⊢ ( ( 𝑌 ∈ dom ∞Met ∧ 𝑋 ∈ dom ∞Met ) → ( 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ↔ 𝑓 : 𝑋 ⟶ 𝑌 ) ) |
42 |
39 40 41
|
syl2anr |
⊢ ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) → ( 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ↔ 𝑓 : 𝑋 ⟶ 𝑌 ) ) |
43 |
38 42
|
syl5ibr |
⊢ ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) → ( ( 𝑓 : 𝑋 –1-1-onto→ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) 𝑁 ( 𝑓 ‘ 𝑦 ) ) ) → 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ) ) |
44 |
43
|
abssdv |
⊢ ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) → { 𝑓 ∣ ( 𝑓 : 𝑋 –1-1-onto→ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) 𝑁 ( 𝑓 ‘ 𝑦 ) ) ) } ⊆ ( 𝑌 ↑m 𝑋 ) ) |
45 |
|
ovex |
⊢ ( 𝑌 ↑m 𝑋 ) ∈ V |
46 |
45
|
ssex |
⊢ ( { 𝑓 ∣ ( 𝑓 : 𝑋 –1-1-onto→ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) 𝑁 ( 𝑓 ‘ 𝑦 ) ) ) } ⊆ ( 𝑌 ↑m 𝑋 ) → { 𝑓 ∣ ( 𝑓 : 𝑋 –1-1-onto→ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) 𝑁 ( 𝑓 ‘ 𝑦 ) ) ) } ∈ V ) |
47 |
44 46
|
syl |
⊢ ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) → { 𝑓 ∣ ( 𝑓 : 𝑋 –1-1-onto→ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) 𝑁 ( 𝑓 ‘ 𝑦 ) ) ) } ∈ V ) |
48 |
2 30 33 36 47
|
ovmpod |
⊢ ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) → ( 𝑀 Ismty 𝑁 ) = { 𝑓 ∣ ( 𝑓 : 𝑋 –1-1-onto→ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) 𝑁 ( 𝑓 ‘ 𝑦 ) ) ) } ) |