| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isnacs.f | ⊢ 𝐹  =  ( mrCls ‘ 𝐶 ) | 
						
							| 2 | 1 | isnacs | ⊢ ( 𝐶  ∈  ( NoeACS ‘ 𝑋 )  ↔  ( 𝐶  ∈  ( ACS ‘ 𝑋 )  ∧  ∀ 𝑠  ∈  𝐶 ∃ 𝑔  ∈  ( 𝒫  𝑋  ∩  Fin ) 𝑠  =  ( 𝐹 ‘ 𝑔 ) ) ) | 
						
							| 3 |  | eqcom | ⊢ ( 𝑠  =  ( 𝐹 ‘ 𝑔 )  ↔  ( 𝐹 ‘ 𝑔 )  =  𝑠 ) | 
						
							| 4 | 3 | rexbii | ⊢ ( ∃ 𝑔  ∈  ( 𝒫  𝑋  ∩  Fin ) 𝑠  =  ( 𝐹 ‘ 𝑔 )  ↔  ∃ 𝑔  ∈  ( 𝒫  𝑋  ∩  Fin ) ( 𝐹 ‘ 𝑔 )  =  𝑠 ) | 
						
							| 5 |  | acsmre | ⊢ ( 𝐶  ∈  ( ACS ‘ 𝑋 )  →  𝐶  ∈  ( Moore ‘ 𝑋 ) ) | 
						
							| 6 | 1 | mrcf | ⊢ ( 𝐶  ∈  ( Moore ‘ 𝑋 )  →  𝐹 : 𝒫  𝑋 ⟶ 𝐶 ) | 
						
							| 7 |  | ffn | ⊢ ( 𝐹 : 𝒫  𝑋 ⟶ 𝐶  →  𝐹  Fn  𝒫  𝑋 ) | 
						
							| 8 | 5 6 7 | 3syl | ⊢ ( 𝐶  ∈  ( ACS ‘ 𝑋 )  →  𝐹  Fn  𝒫  𝑋 ) | 
						
							| 9 |  | inss1 | ⊢ ( 𝒫  𝑋  ∩  Fin )  ⊆  𝒫  𝑋 | 
						
							| 10 |  | fvelimab | ⊢ ( ( 𝐹  Fn  𝒫  𝑋  ∧  ( 𝒫  𝑋  ∩  Fin )  ⊆  𝒫  𝑋 )  →  ( 𝑠  ∈  ( 𝐹  “  ( 𝒫  𝑋  ∩  Fin ) )  ↔  ∃ 𝑔  ∈  ( 𝒫  𝑋  ∩  Fin ) ( 𝐹 ‘ 𝑔 )  =  𝑠 ) ) | 
						
							| 11 | 8 9 10 | sylancl | ⊢ ( 𝐶  ∈  ( ACS ‘ 𝑋 )  →  ( 𝑠  ∈  ( 𝐹  “  ( 𝒫  𝑋  ∩  Fin ) )  ↔  ∃ 𝑔  ∈  ( 𝒫  𝑋  ∩  Fin ) ( 𝐹 ‘ 𝑔 )  =  𝑠 ) ) | 
						
							| 12 | 4 11 | bitr4id | ⊢ ( 𝐶  ∈  ( ACS ‘ 𝑋 )  →  ( ∃ 𝑔  ∈  ( 𝒫  𝑋  ∩  Fin ) 𝑠  =  ( 𝐹 ‘ 𝑔 )  ↔  𝑠  ∈  ( 𝐹  “  ( 𝒫  𝑋  ∩  Fin ) ) ) ) | 
						
							| 13 | 12 | ralbidv | ⊢ ( 𝐶  ∈  ( ACS ‘ 𝑋 )  →  ( ∀ 𝑠  ∈  𝐶 ∃ 𝑔  ∈  ( 𝒫  𝑋  ∩  Fin ) 𝑠  =  ( 𝐹 ‘ 𝑔 )  ↔  ∀ 𝑠  ∈  𝐶 𝑠  ∈  ( 𝐹  “  ( 𝒫  𝑋  ∩  Fin ) ) ) ) | 
						
							| 14 |  | dfss3 | ⊢ ( 𝐶  ⊆  ( 𝐹  “  ( 𝒫  𝑋  ∩  Fin ) )  ↔  ∀ 𝑠  ∈  𝐶 𝑠  ∈  ( 𝐹  “  ( 𝒫  𝑋  ∩  Fin ) ) ) | 
						
							| 15 | 13 14 | bitr4di | ⊢ ( 𝐶  ∈  ( ACS ‘ 𝑋 )  →  ( ∀ 𝑠  ∈  𝐶 ∃ 𝑔  ∈  ( 𝒫  𝑋  ∩  Fin ) 𝑠  =  ( 𝐹 ‘ 𝑔 )  ↔  𝐶  ⊆  ( 𝐹  “  ( 𝒫  𝑋  ∩  Fin ) ) ) ) | 
						
							| 16 |  | imassrn | ⊢ ( 𝐹  “  ( 𝒫  𝑋  ∩  Fin ) )  ⊆  ran  𝐹 | 
						
							| 17 |  | frn | ⊢ ( 𝐹 : 𝒫  𝑋 ⟶ 𝐶  →  ran  𝐹  ⊆  𝐶 ) | 
						
							| 18 | 5 6 17 | 3syl | ⊢ ( 𝐶  ∈  ( ACS ‘ 𝑋 )  →  ran  𝐹  ⊆  𝐶 ) | 
						
							| 19 | 16 18 | sstrid | ⊢ ( 𝐶  ∈  ( ACS ‘ 𝑋 )  →  ( 𝐹  “  ( 𝒫  𝑋  ∩  Fin ) )  ⊆  𝐶 ) | 
						
							| 20 | 19 | biantrurd | ⊢ ( 𝐶  ∈  ( ACS ‘ 𝑋 )  →  ( 𝐶  ⊆  ( 𝐹  “  ( 𝒫  𝑋  ∩  Fin ) )  ↔  ( ( 𝐹  “  ( 𝒫  𝑋  ∩  Fin ) )  ⊆  𝐶  ∧  𝐶  ⊆  ( 𝐹  “  ( 𝒫  𝑋  ∩  Fin ) ) ) ) ) | 
						
							| 21 |  | eqss | ⊢ ( ( 𝐹  “  ( 𝒫  𝑋  ∩  Fin ) )  =  𝐶  ↔  ( ( 𝐹  “  ( 𝒫  𝑋  ∩  Fin ) )  ⊆  𝐶  ∧  𝐶  ⊆  ( 𝐹  “  ( 𝒫  𝑋  ∩  Fin ) ) ) ) | 
						
							| 22 | 20 21 | bitr4di | ⊢ ( 𝐶  ∈  ( ACS ‘ 𝑋 )  →  ( 𝐶  ⊆  ( 𝐹  “  ( 𝒫  𝑋  ∩  Fin ) )  ↔  ( 𝐹  “  ( 𝒫  𝑋  ∩  Fin ) )  =  𝐶 ) ) | 
						
							| 23 | 15 22 | bitrd | ⊢ ( 𝐶  ∈  ( ACS ‘ 𝑋 )  →  ( ∀ 𝑠  ∈  𝐶 ∃ 𝑔  ∈  ( 𝒫  𝑋  ∩  Fin ) 𝑠  =  ( 𝐹 ‘ 𝑔 )  ↔  ( 𝐹  “  ( 𝒫  𝑋  ∩  Fin ) )  =  𝐶 ) ) | 
						
							| 24 | 23 | pm5.32i | ⊢ ( ( 𝐶  ∈  ( ACS ‘ 𝑋 )  ∧  ∀ 𝑠  ∈  𝐶 ∃ 𝑔  ∈  ( 𝒫  𝑋  ∩  Fin ) 𝑠  =  ( 𝐹 ‘ 𝑔 ) )  ↔  ( 𝐶  ∈  ( ACS ‘ 𝑋 )  ∧  ( 𝐹  “  ( 𝒫  𝑋  ∩  Fin ) )  =  𝐶 ) ) | 
						
							| 25 | 2 24 | bitri | ⊢ ( 𝐶  ∈  ( NoeACS ‘ 𝑋 )  ↔  ( 𝐶  ∈  ( ACS ‘ 𝑋 )  ∧  ( 𝐹  “  ( 𝒫  𝑋  ∩  Fin ) )  =  𝐶 ) ) |