| Step | Hyp | Ref | Expression | 
						
							| 1 |  | natfval.1 | ⊢ 𝑁  =  ( 𝐶  Nat  𝐷 ) | 
						
							| 2 |  | natfval.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 3 |  | natfval.h | ⊢ 𝐻  =  ( Hom  ‘ 𝐶 ) | 
						
							| 4 |  | natfval.j | ⊢ 𝐽  =  ( Hom  ‘ 𝐷 ) | 
						
							| 5 |  | natfval.o | ⊢  ·   =  ( comp ‘ 𝐷 ) | 
						
							| 6 |  | isnat.f | ⊢ ( 𝜑  →  𝐹 ( 𝐶  Func  𝐷 ) 𝐺 ) | 
						
							| 7 |  | isnat.g | ⊢ ( 𝜑  →  𝐾 ( 𝐶  Func  𝐷 ) 𝐿 ) | 
						
							| 8 | 1 2 3 4 5 | natfval | ⊢ 𝑁  =  ( 𝑓  ∈  ( 𝐶  Func  𝐷 ) ,  𝑔  ∈  ( 𝐶  Func  𝐷 )  ↦  ⦋ ( 1st  ‘ 𝑓 )  /  𝑟 ⦌ ⦋ ( 1st  ‘ 𝑔 )  /  𝑠 ⦌ { 𝑎  ∈  X 𝑥  ∈  𝐵 ( ( 𝑟 ‘ 𝑥 ) 𝐽 ( 𝑠 ‘ 𝑥 ) )  ∣  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∀ ℎ  ∈  ( 𝑥 𝐻 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) ,  ( 𝑟 ‘ 𝑦 ) 〉  ·  ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd  ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) )  =  ( ( ( 𝑥 ( 2nd  ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) ,  ( 𝑠 ‘ 𝑥 ) 〉  ·  ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) | 
						
							| 9 | 8 | a1i | ⊢ ( 𝜑  →  𝑁  =  ( 𝑓  ∈  ( 𝐶  Func  𝐷 ) ,  𝑔  ∈  ( 𝐶  Func  𝐷 )  ↦  ⦋ ( 1st  ‘ 𝑓 )  /  𝑟 ⦌ ⦋ ( 1st  ‘ 𝑔 )  /  𝑠 ⦌ { 𝑎  ∈  X 𝑥  ∈  𝐵 ( ( 𝑟 ‘ 𝑥 ) 𝐽 ( 𝑠 ‘ 𝑥 ) )  ∣  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∀ ℎ  ∈  ( 𝑥 𝐻 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) ,  ( 𝑟 ‘ 𝑦 ) 〉  ·  ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd  ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) )  =  ( ( ( 𝑥 ( 2nd  ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) ,  ( 𝑠 ‘ 𝑥 ) 〉  ·  ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) ) | 
						
							| 10 |  | fvexd | ⊢ ( ( 𝜑  ∧  ( 𝑓  =  〈 𝐹 ,  𝐺 〉  ∧  𝑔  =  〈 𝐾 ,  𝐿 〉 ) )  →  ( 1st  ‘ 𝑓 )  ∈  V ) | 
						
							| 11 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑓  =  〈 𝐹 ,  𝐺 〉  ∧  𝑔  =  〈 𝐾 ,  𝐿 〉 ) )  →  𝑓  =  〈 𝐹 ,  𝐺 〉 ) | 
						
							| 12 | 11 | fveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑓  =  〈 𝐹 ,  𝐺 〉  ∧  𝑔  =  〈 𝐾 ,  𝐿 〉 ) )  →  ( 1st  ‘ 𝑓 )  =  ( 1st  ‘ 〈 𝐹 ,  𝐺 〉 ) ) | 
						
							| 13 |  | relfunc | ⊢ Rel  ( 𝐶  Func  𝐷 ) | 
						
							| 14 |  | brrelex12 | ⊢ ( ( Rel  ( 𝐶  Func  𝐷 )  ∧  𝐹 ( 𝐶  Func  𝐷 ) 𝐺 )  →  ( 𝐹  ∈  V  ∧  𝐺  ∈  V ) ) | 
						
							| 15 | 13 6 14 | sylancr | ⊢ ( 𝜑  →  ( 𝐹  ∈  V  ∧  𝐺  ∈  V ) ) | 
						
							| 16 |  | op1stg | ⊢ ( ( 𝐹  ∈  V  ∧  𝐺  ∈  V )  →  ( 1st  ‘ 〈 𝐹 ,  𝐺 〉 )  =  𝐹 ) | 
						
							| 17 | 15 16 | syl | ⊢ ( 𝜑  →  ( 1st  ‘ 〈 𝐹 ,  𝐺 〉 )  =  𝐹 ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑓  =  〈 𝐹 ,  𝐺 〉  ∧  𝑔  =  〈 𝐾 ,  𝐿 〉 ) )  →  ( 1st  ‘ 〈 𝐹 ,  𝐺 〉 )  =  𝐹 ) | 
						
							| 19 | 12 18 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑓  =  〈 𝐹 ,  𝐺 〉  ∧  𝑔  =  〈 𝐾 ,  𝐿 〉 ) )  →  ( 1st  ‘ 𝑓 )  =  𝐹 ) | 
						
							| 20 |  | fvexd | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  =  〈 𝐹 ,  𝐺 〉  ∧  𝑔  =  〈 𝐾 ,  𝐿 〉 ) )  ∧  𝑟  =  𝐹 )  →  ( 1st  ‘ 𝑔 )  ∈  V ) | 
						
							| 21 |  | simplrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  =  〈 𝐹 ,  𝐺 〉  ∧  𝑔  =  〈 𝐾 ,  𝐿 〉 ) )  ∧  𝑟  =  𝐹 )  →  𝑔  =  〈 𝐾 ,  𝐿 〉 ) | 
						
							| 22 | 21 | fveq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  =  〈 𝐹 ,  𝐺 〉  ∧  𝑔  =  〈 𝐾 ,  𝐿 〉 ) )  ∧  𝑟  =  𝐹 )  →  ( 1st  ‘ 𝑔 )  =  ( 1st  ‘ 〈 𝐾 ,  𝐿 〉 ) ) | 
						
							| 23 |  | brrelex12 | ⊢ ( ( Rel  ( 𝐶  Func  𝐷 )  ∧  𝐾 ( 𝐶  Func  𝐷 ) 𝐿 )  →  ( 𝐾  ∈  V  ∧  𝐿  ∈  V ) ) | 
						
							| 24 | 13 7 23 | sylancr | ⊢ ( 𝜑  →  ( 𝐾  ∈  V  ∧  𝐿  ∈  V ) ) | 
						
							| 25 |  | op1stg | ⊢ ( ( 𝐾  ∈  V  ∧  𝐿  ∈  V )  →  ( 1st  ‘ 〈 𝐾 ,  𝐿 〉 )  =  𝐾 ) | 
						
							| 26 | 24 25 | syl | ⊢ ( 𝜑  →  ( 1st  ‘ 〈 𝐾 ,  𝐿 〉 )  =  𝐾 ) | 
						
							| 27 | 26 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  =  〈 𝐹 ,  𝐺 〉  ∧  𝑔  =  〈 𝐾 ,  𝐿 〉 ) )  ∧  𝑟  =  𝐹 )  →  ( 1st  ‘ 〈 𝐾 ,  𝐿 〉 )  =  𝐾 ) | 
						
							| 28 | 22 27 | eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  =  〈 𝐹 ,  𝐺 〉  ∧  𝑔  =  〈 𝐾 ,  𝐿 〉 ) )  ∧  𝑟  =  𝐹 )  →  ( 1st  ‘ 𝑔 )  =  𝐾 ) | 
						
							| 29 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓  =  〈 𝐹 ,  𝐺 〉  ∧  𝑔  =  〈 𝐾 ,  𝐿 〉 ) )  ∧  𝑟  =  𝐹 )  ∧  𝑠  =  𝐾 )  →  𝑟  =  𝐹 ) | 
						
							| 30 | 29 | fveq1d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓  =  〈 𝐹 ,  𝐺 〉  ∧  𝑔  =  〈 𝐾 ,  𝐿 〉 ) )  ∧  𝑟  =  𝐹 )  ∧  𝑠  =  𝐾 )  →  ( 𝑟 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 31 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓  =  〈 𝐹 ,  𝐺 〉  ∧  𝑔  =  〈 𝐾 ,  𝐿 〉 ) )  ∧  𝑟  =  𝐹 )  ∧  𝑠  =  𝐾 )  →  𝑠  =  𝐾 ) | 
						
							| 32 | 31 | fveq1d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓  =  〈 𝐹 ,  𝐺 〉  ∧  𝑔  =  〈 𝐾 ,  𝐿 〉 ) )  ∧  𝑟  =  𝐹 )  ∧  𝑠  =  𝐾 )  →  ( 𝑠 ‘ 𝑥 )  =  ( 𝐾 ‘ 𝑥 ) ) | 
						
							| 33 | 30 32 | oveq12d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓  =  〈 𝐹 ,  𝐺 〉  ∧  𝑔  =  〈 𝐾 ,  𝐿 〉 ) )  ∧  𝑟  =  𝐹 )  ∧  𝑠  =  𝐾 )  →  ( ( 𝑟 ‘ 𝑥 ) 𝐽 ( 𝑠 ‘ 𝑥 ) )  =  ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) ) ) | 
						
							| 34 | 33 | ixpeq2dv | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓  =  〈 𝐹 ,  𝐺 〉  ∧  𝑔  =  〈 𝐾 ,  𝐿 〉 ) )  ∧  𝑟  =  𝐹 )  ∧  𝑠  =  𝐾 )  →  X 𝑥  ∈  𝐵 ( ( 𝑟 ‘ 𝑥 ) 𝐽 ( 𝑠 ‘ 𝑥 ) )  =  X 𝑥  ∈  𝐵 ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) ) ) | 
						
							| 35 | 29 | fveq1d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓  =  〈 𝐹 ,  𝐺 〉  ∧  𝑔  =  〈 𝐾 ,  𝐿 〉 ) )  ∧  𝑟  =  𝐹 )  ∧  𝑠  =  𝐾 )  →  ( 𝑟 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 36 | 30 35 | opeq12d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓  =  〈 𝐹 ,  𝐺 〉  ∧  𝑔  =  〈 𝐾 ,  𝐿 〉 ) )  ∧  𝑟  =  𝐹 )  ∧  𝑠  =  𝐾 )  →  〈 ( 𝑟 ‘ 𝑥 ) ,  ( 𝑟 ‘ 𝑦 ) 〉  =  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉 ) | 
						
							| 37 | 31 | fveq1d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓  =  〈 𝐹 ,  𝐺 〉  ∧  𝑔  =  〈 𝐾 ,  𝐿 〉 ) )  ∧  𝑟  =  𝐹 )  ∧  𝑠  =  𝐾 )  →  ( 𝑠 ‘ 𝑦 )  =  ( 𝐾 ‘ 𝑦 ) ) | 
						
							| 38 | 36 37 | oveq12d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓  =  〈 𝐹 ,  𝐺 〉  ∧  𝑔  =  〈 𝐾 ,  𝐿 〉 ) )  ∧  𝑟  =  𝐹 )  ∧  𝑠  =  𝐾 )  →  ( 〈 ( 𝑟 ‘ 𝑥 ) ,  ( 𝑟 ‘ 𝑦 ) 〉  ·  ( 𝑠 ‘ 𝑦 ) )  =  ( 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉  ·  ( 𝐾 ‘ 𝑦 ) ) ) | 
						
							| 39 |  | eqidd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓  =  〈 𝐹 ,  𝐺 〉  ∧  𝑔  =  〈 𝐾 ,  𝐿 〉 ) )  ∧  𝑟  =  𝐹 )  ∧  𝑠  =  𝐾 )  →  ( 𝑎 ‘ 𝑦 )  =  ( 𝑎 ‘ 𝑦 ) ) | 
						
							| 40 | 11 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓  =  〈 𝐹 ,  𝐺 〉  ∧  𝑔  =  〈 𝐾 ,  𝐿 〉 ) )  ∧  𝑟  =  𝐹 )  ∧  𝑠  =  𝐾 )  →  𝑓  =  〈 𝐹 ,  𝐺 〉 ) | 
						
							| 41 | 40 | fveq2d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓  =  〈 𝐹 ,  𝐺 〉  ∧  𝑔  =  〈 𝐾 ,  𝐿 〉 ) )  ∧  𝑟  =  𝐹 )  ∧  𝑠  =  𝐾 )  →  ( 2nd  ‘ 𝑓 )  =  ( 2nd  ‘ 〈 𝐹 ,  𝐺 〉 ) ) | 
						
							| 42 |  | op2ndg | ⊢ ( ( 𝐹  ∈  V  ∧  𝐺  ∈  V )  →  ( 2nd  ‘ 〈 𝐹 ,  𝐺 〉 )  =  𝐺 ) | 
						
							| 43 | 15 42 | syl | ⊢ ( 𝜑  →  ( 2nd  ‘ 〈 𝐹 ,  𝐺 〉 )  =  𝐺 ) | 
						
							| 44 | 43 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓  =  〈 𝐹 ,  𝐺 〉  ∧  𝑔  =  〈 𝐾 ,  𝐿 〉 ) )  ∧  𝑟  =  𝐹 )  ∧  𝑠  =  𝐾 )  →  ( 2nd  ‘ 〈 𝐹 ,  𝐺 〉 )  =  𝐺 ) | 
						
							| 45 | 41 44 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓  =  〈 𝐹 ,  𝐺 〉  ∧  𝑔  =  〈 𝐾 ,  𝐿 〉 ) )  ∧  𝑟  =  𝐹 )  ∧  𝑠  =  𝐾 )  →  ( 2nd  ‘ 𝑓 )  =  𝐺 ) | 
						
							| 46 | 45 | oveqd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓  =  〈 𝐹 ,  𝐺 〉  ∧  𝑔  =  〈 𝐾 ,  𝐿 〉 ) )  ∧  𝑟  =  𝐹 )  ∧  𝑠  =  𝐾 )  →  ( 𝑥 ( 2nd  ‘ 𝑓 ) 𝑦 )  =  ( 𝑥 𝐺 𝑦 ) ) | 
						
							| 47 | 46 | fveq1d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓  =  〈 𝐹 ,  𝐺 〉  ∧  𝑔  =  〈 𝐾 ,  𝐿 〉 ) )  ∧  𝑟  =  𝐹 )  ∧  𝑠  =  𝐾 )  →  ( ( 𝑥 ( 2nd  ‘ 𝑓 ) 𝑦 ) ‘ ℎ )  =  ( ( 𝑥 𝐺 𝑦 ) ‘ ℎ ) ) | 
						
							| 48 | 38 39 47 | oveq123d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓  =  〈 𝐹 ,  𝐺 〉  ∧  𝑔  =  〈 𝐾 ,  𝐿 〉 ) )  ∧  𝑟  =  𝐹 )  ∧  𝑠  =  𝐾 )  →  ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) ,  ( 𝑟 ‘ 𝑦 ) 〉  ·  ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd  ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) )  =  ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉  ·  ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ ℎ ) ) ) | 
						
							| 49 | 30 32 | opeq12d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓  =  〈 𝐹 ,  𝐺 〉  ∧  𝑔  =  〈 𝐾 ,  𝐿 〉 ) )  ∧  𝑟  =  𝐹 )  ∧  𝑠  =  𝐾 )  →  〈 ( 𝑟 ‘ 𝑥 ) ,  ( 𝑠 ‘ 𝑥 ) 〉  =  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐾 ‘ 𝑥 ) 〉 ) | 
						
							| 50 | 49 37 | oveq12d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓  =  〈 𝐹 ,  𝐺 〉  ∧  𝑔  =  〈 𝐾 ,  𝐿 〉 ) )  ∧  𝑟  =  𝐹 )  ∧  𝑠  =  𝐾 )  →  ( 〈 ( 𝑟 ‘ 𝑥 ) ,  ( 𝑠 ‘ 𝑥 ) 〉  ·  ( 𝑠 ‘ 𝑦 ) )  =  ( 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐾 ‘ 𝑥 ) 〉  ·  ( 𝐾 ‘ 𝑦 ) ) ) | 
						
							| 51 | 21 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓  =  〈 𝐹 ,  𝐺 〉  ∧  𝑔  =  〈 𝐾 ,  𝐿 〉 ) )  ∧  𝑟  =  𝐹 )  ∧  𝑠  =  𝐾 )  →  𝑔  =  〈 𝐾 ,  𝐿 〉 ) | 
						
							| 52 | 51 | fveq2d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓  =  〈 𝐹 ,  𝐺 〉  ∧  𝑔  =  〈 𝐾 ,  𝐿 〉 ) )  ∧  𝑟  =  𝐹 )  ∧  𝑠  =  𝐾 )  →  ( 2nd  ‘ 𝑔 )  =  ( 2nd  ‘ 〈 𝐾 ,  𝐿 〉 ) ) | 
						
							| 53 |  | op2ndg | ⊢ ( ( 𝐾  ∈  V  ∧  𝐿  ∈  V )  →  ( 2nd  ‘ 〈 𝐾 ,  𝐿 〉 )  =  𝐿 ) | 
						
							| 54 | 24 53 | syl | ⊢ ( 𝜑  →  ( 2nd  ‘ 〈 𝐾 ,  𝐿 〉 )  =  𝐿 ) | 
						
							| 55 | 54 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓  =  〈 𝐹 ,  𝐺 〉  ∧  𝑔  =  〈 𝐾 ,  𝐿 〉 ) )  ∧  𝑟  =  𝐹 )  ∧  𝑠  =  𝐾 )  →  ( 2nd  ‘ 〈 𝐾 ,  𝐿 〉 )  =  𝐿 ) | 
						
							| 56 | 52 55 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓  =  〈 𝐹 ,  𝐺 〉  ∧  𝑔  =  〈 𝐾 ,  𝐿 〉 ) )  ∧  𝑟  =  𝐹 )  ∧  𝑠  =  𝐾 )  →  ( 2nd  ‘ 𝑔 )  =  𝐿 ) | 
						
							| 57 | 56 | oveqd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓  =  〈 𝐹 ,  𝐺 〉  ∧  𝑔  =  〈 𝐾 ,  𝐿 〉 ) )  ∧  𝑟  =  𝐹 )  ∧  𝑠  =  𝐾 )  →  ( 𝑥 ( 2nd  ‘ 𝑔 ) 𝑦 )  =  ( 𝑥 𝐿 𝑦 ) ) | 
						
							| 58 | 57 | fveq1d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓  =  〈 𝐹 ,  𝐺 〉  ∧  𝑔  =  〈 𝐾 ,  𝐿 〉 ) )  ∧  𝑟  =  𝐹 )  ∧  𝑠  =  𝐾 )  →  ( ( 𝑥 ( 2nd  ‘ 𝑔 ) 𝑦 ) ‘ ℎ )  =  ( ( 𝑥 𝐿 𝑦 ) ‘ ℎ ) ) | 
						
							| 59 |  | eqidd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓  =  〈 𝐹 ,  𝐺 〉  ∧  𝑔  =  〈 𝐾 ,  𝐿 〉 ) )  ∧  𝑟  =  𝐹 )  ∧  𝑠  =  𝐾 )  →  ( 𝑎 ‘ 𝑥 )  =  ( 𝑎 ‘ 𝑥 ) ) | 
						
							| 60 | 50 58 59 | oveq123d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓  =  〈 𝐹 ,  𝐺 〉  ∧  𝑔  =  〈 𝐾 ,  𝐿 〉 ) )  ∧  𝑟  =  𝐹 )  ∧  𝑠  =  𝐾 )  →  ( ( ( 𝑥 ( 2nd  ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) ,  ( 𝑠 ‘ 𝑥 ) 〉  ·  ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) )  =  ( ( ( 𝑥 𝐿 𝑦 ) ‘ ℎ ) ( 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐾 ‘ 𝑥 ) 〉  ·  ( 𝐾 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) ) | 
						
							| 61 | 48 60 | eqeq12d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓  =  〈 𝐹 ,  𝐺 〉  ∧  𝑔  =  〈 𝐾 ,  𝐿 〉 ) )  ∧  𝑟  =  𝐹 )  ∧  𝑠  =  𝐾 )  →  ( ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) ,  ( 𝑟 ‘ 𝑦 ) 〉  ·  ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd  ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) )  =  ( ( ( 𝑥 ( 2nd  ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) ,  ( 𝑠 ‘ 𝑥 ) 〉  ·  ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) )  ↔  ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉  ·  ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ ℎ ) )  =  ( ( ( 𝑥 𝐿 𝑦 ) ‘ ℎ ) ( 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐾 ‘ 𝑥 ) 〉  ·  ( 𝐾 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) ) ) | 
						
							| 62 | 61 | ralbidv | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓  =  〈 𝐹 ,  𝐺 〉  ∧  𝑔  =  〈 𝐾 ,  𝐿 〉 ) )  ∧  𝑟  =  𝐹 )  ∧  𝑠  =  𝐾 )  →  ( ∀ ℎ  ∈  ( 𝑥 𝐻 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) ,  ( 𝑟 ‘ 𝑦 ) 〉  ·  ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd  ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) )  =  ( ( ( 𝑥 ( 2nd  ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) ,  ( 𝑠 ‘ 𝑥 ) 〉  ·  ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) )  ↔  ∀ ℎ  ∈  ( 𝑥 𝐻 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉  ·  ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ ℎ ) )  =  ( ( ( 𝑥 𝐿 𝑦 ) ‘ ℎ ) ( 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐾 ‘ 𝑥 ) 〉  ·  ( 𝐾 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) ) ) | 
						
							| 63 | 62 | 2ralbidv | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓  =  〈 𝐹 ,  𝐺 〉  ∧  𝑔  =  〈 𝐾 ,  𝐿 〉 ) )  ∧  𝑟  =  𝐹 )  ∧  𝑠  =  𝐾 )  →  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∀ ℎ  ∈  ( 𝑥 𝐻 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) ,  ( 𝑟 ‘ 𝑦 ) 〉  ·  ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd  ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) )  =  ( ( ( 𝑥 ( 2nd  ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) ,  ( 𝑠 ‘ 𝑥 ) 〉  ·  ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) )  ↔  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∀ ℎ  ∈  ( 𝑥 𝐻 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉  ·  ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ ℎ ) )  =  ( ( ( 𝑥 𝐿 𝑦 ) ‘ ℎ ) ( 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐾 ‘ 𝑥 ) 〉  ·  ( 𝐾 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) ) ) | 
						
							| 64 | 34 63 | rabeqbidv | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓  =  〈 𝐹 ,  𝐺 〉  ∧  𝑔  =  〈 𝐾 ,  𝐿 〉 ) )  ∧  𝑟  =  𝐹 )  ∧  𝑠  =  𝐾 )  →  { 𝑎  ∈  X 𝑥  ∈  𝐵 ( ( 𝑟 ‘ 𝑥 ) 𝐽 ( 𝑠 ‘ 𝑥 ) )  ∣  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∀ ℎ  ∈  ( 𝑥 𝐻 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) ,  ( 𝑟 ‘ 𝑦 ) 〉  ·  ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd  ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) )  =  ( ( ( 𝑥 ( 2nd  ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) ,  ( 𝑠 ‘ 𝑥 ) 〉  ·  ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) }  =  { 𝑎  ∈  X 𝑥  ∈  𝐵 ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) )  ∣  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∀ ℎ  ∈  ( 𝑥 𝐻 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉  ·  ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ ℎ ) )  =  ( ( ( 𝑥 𝐿 𝑦 ) ‘ ℎ ) ( 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐾 ‘ 𝑥 ) 〉  ·  ( 𝐾 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) | 
						
							| 65 | 20 28 64 | csbied2 | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  =  〈 𝐹 ,  𝐺 〉  ∧  𝑔  =  〈 𝐾 ,  𝐿 〉 ) )  ∧  𝑟  =  𝐹 )  →  ⦋ ( 1st  ‘ 𝑔 )  /  𝑠 ⦌ { 𝑎  ∈  X 𝑥  ∈  𝐵 ( ( 𝑟 ‘ 𝑥 ) 𝐽 ( 𝑠 ‘ 𝑥 ) )  ∣  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∀ ℎ  ∈  ( 𝑥 𝐻 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) ,  ( 𝑟 ‘ 𝑦 ) 〉  ·  ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd  ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) )  =  ( ( ( 𝑥 ( 2nd  ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) ,  ( 𝑠 ‘ 𝑥 ) 〉  ·  ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) }  =  { 𝑎  ∈  X 𝑥  ∈  𝐵 ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) )  ∣  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∀ ℎ  ∈  ( 𝑥 𝐻 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉  ·  ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ ℎ ) )  =  ( ( ( 𝑥 𝐿 𝑦 ) ‘ ℎ ) ( 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐾 ‘ 𝑥 ) 〉  ·  ( 𝐾 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) | 
						
							| 66 | 10 19 65 | csbied2 | ⊢ ( ( 𝜑  ∧  ( 𝑓  =  〈 𝐹 ,  𝐺 〉  ∧  𝑔  =  〈 𝐾 ,  𝐿 〉 ) )  →  ⦋ ( 1st  ‘ 𝑓 )  /  𝑟 ⦌ ⦋ ( 1st  ‘ 𝑔 )  /  𝑠 ⦌ { 𝑎  ∈  X 𝑥  ∈  𝐵 ( ( 𝑟 ‘ 𝑥 ) 𝐽 ( 𝑠 ‘ 𝑥 ) )  ∣  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∀ ℎ  ∈  ( 𝑥 𝐻 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) ,  ( 𝑟 ‘ 𝑦 ) 〉  ·  ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd  ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) )  =  ( ( ( 𝑥 ( 2nd  ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) ,  ( 𝑠 ‘ 𝑥 ) 〉  ·  ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) }  =  { 𝑎  ∈  X 𝑥  ∈  𝐵 ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) )  ∣  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∀ ℎ  ∈  ( 𝑥 𝐻 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉  ·  ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ ℎ ) )  =  ( ( ( 𝑥 𝐿 𝑦 ) ‘ ℎ ) ( 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐾 ‘ 𝑥 ) 〉  ·  ( 𝐾 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) | 
						
							| 67 |  | df-br | ⊢ ( 𝐹 ( 𝐶  Func  𝐷 ) 𝐺  ↔  〈 𝐹 ,  𝐺 〉  ∈  ( 𝐶  Func  𝐷 ) ) | 
						
							| 68 | 6 67 | sylib | ⊢ ( 𝜑  →  〈 𝐹 ,  𝐺 〉  ∈  ( 𝐶  Func  𝐷 ) ) | 
						
							| 69 |  | df-br | ⊢ ( 𝐾 ( 𝐶  Func  𝐷 ) 𝐿  ↔  〈 𝐾 ,  𝐿 〉  ∈  ( 𝐶  Func  𝐷 ) ) | 
						
							| 70 | 7 69 | sylib | ⊢ ( 𝜑  →  〈 𝐾 ,  𝐿 〉  ∈  ( 𝐶  Func  𝐷 ) ) | 
						
							| 71 |  | ovex | ⊢ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) )  ∈  V | 
						
							| 72 | 71 | rgenw | ⊢ ∀ 𝑥  ∈  𝐵 ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) )  ∈  V | 
						
							| 73 |  | ixpexg | ⊢ ( ∀ 𝑥  ∈  𝐵 ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) )  ∈  V  →  X 𝑥  ∈  𝐵 ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) )  ∈  V ) | 
						
							| 74 | 72 73 | ax-mp | ⊢ X 𝑥  ∈  𝐵 ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) )  ∈  V | 
						
							| 75 | 74 | rabex | ⊢ { 𝑎  ∈  X 𝑥  ∈  𝐵 ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) )  ∣  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∀ ℎ  ∈  ( 𝑥 𝐻 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉  ·  ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ ℎ ) )  =  ( ( ( 𝑥 𝐿 𝑦 ) ‘ ℎ ) ( 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐾 ‘ 𝑥 ) 〉  ·  ( 𝐾 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) }  ∈  V | 
						
							| 76 | 75 | a1i | ⊢ ( 𝜑  →  { 𝑎  ∈  X 𝑥  ∈  𝐵 ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) )  ∣  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∀ ℎ  ∈  ( 𝑥 𝐻 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉  ·  ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ ℎ ) )  =  ( ( ( 𝑥 𝐿 𝑦 ) ‘ ℎ ) ( 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐾 ‘ 𝑥 ) 〉  ·  ( 𝐾 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) }  ∈  V ) | 
						
							| 77 | 9 66 68 70 76 | ovmpod | ⊢ ( 𝜑  →  ( 〈 𝐹 ,  𝐺 〉 𝑁 〈 𝐾 ,  𝐿 〉 )  =  { 𝑎  ∈  X 𝑥  ∈  𝐵 ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) )  ∣  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∀ ℎ  ∈  ( 𝑥 𝐻 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉  ·  ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ ℎ ) )  =  ( ( ( 𝑥 𝐿 𝑦 ) ‘ ℎ ) ( 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐾 ‘ 𝑥 ) 〉  ·  ( 𝐾 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) | 
						
							| 78 | 77 | eleq2d | ⊢ ( 𝜑  →  ( 𝐴  ∈  ( 〈 𝐹 ,  𝐺 〉 𝑁 〈 𝐾 ,  𝐿 〉 )  ↔  𝐴  ∈  { 𝑎  ∈  X 𝑥  ∈  𝐵 ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) )  ∣  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∀ ℎ  ∈  ( 𝑥 𝐻 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉  ·  ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ ℎ ) )  =  ( ( ( 𝑥 𝐿 𝑦 ) ‘ ℎ ) ( 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐾 ‘ 𝑥 ) 〉  ·  ( 𝐾 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) ) | 
						
							| 79 |  | fveq1 | ⊢ ( 𝑎  =  𝐴  →  ( 𝑎 ‘ 𝑦 )  =  ( 𝐴 ‘ 𝑦 ) ) | 
						
							| 80 | 79 | oveq1d | ⊢ ( 𝑎  =  𝐴  →  ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉  ·  ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ ℎ ) )  =  ( ( 𝐴 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉  ·  ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ ℎ ) ) ) | 
						
							| 81 |  | fveq1 | ⊢ ( 𝑎  =  𝐴  →  ( 𝑎 ‘ 𝑥 )  =  ( 𝐴 ‘ 𝑥 ) ) | 
						
							| 82 | 81 | oveq2d | ⊢ ( 𝑎  =  𝐴  →  ( ( ( 𝑥 𝐿 𝑦 ) ‘ ℎ ) ( 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐾 ‘ 𝑥 ) 〉  ·  ( 𝐾 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) )  =  ( ( ( 𝑥 𝐿 𝑦 ) ‘ ℎ ) ( 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐾 ‘ 𝑥 ) 〉  ·  ( 𝐾 ‘ 𝑦 ) ) ( 𝐴 ‘ 𝑥 ) ) ) | 
						
							| 83 | 80 82 | eqeq12d | ⊢ ( 𝑎  =  𝐴  →  ( ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉  ·  ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ ℎ ) )  =  ( ( ( 𝑥 𝐿 𝑦 ) ‘ ℎ ) ( 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐾 ‘ 𝑥 ) 〉  ·  ( 𝐾 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) )  ↔  ( ( 𝐴 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉  ·  ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ ℎ ) )  =  ( ( ( 𝑥 𝐿 𝑦 ) ‘ ℎ ) ( 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐾 ‘ 𝑥 ) 〉  ·  ( 𝐾 ‘ 𝑦 ) ) ( 𝐴 ‘ 𝑥 ) ) ) ) | 
						
							| 84 | 83 | ralbidv | ⊢ ( 𝑎  =  𝐴  →  ( ∀ ℎ  ∈  ( 𝑥 𝐻 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉  ·  ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ ℎ ) )  =  ( ( ( 𝑥 𝐿 𝑦 ) ‘ ℎ ) ( 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐾 ‘ 𝑥 ) 〉  ·  ( 𝐾 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) )  ↔  ∀ ℎ  ∈  ( 𝑥 𝐻 𝑦 ) ( ( 𝐴 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉  ·  ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ ℎ ) )  =  ( ( ( 𝑥 𝐿 𝑦 ) ‘ ℎ ) ( 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐾 ‘ 𝑥 ) 〉  ·  ( 𝐾 ‘ 𝑦 ) ) ( 𝐴 ‘ 𝑥 ) ) ) ) | 
						
							| 85 | 84 | 2ralbidv | ⊢ ( 𝑎  =  𝐴  →  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∀ ℎ  ∈  ( 𝑥 𝐻 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉  ·  ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ ℎ ) )  =  ( ( ( 𝑥 𝐿 𝑦 ) ‘ ℎ ) ( 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐾 ‘ 𝑥 ) 〉  ·  ( 𝐾 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) )  ↔  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∀ ℎ  ∈  ( 𝑥 𝐻 𝑦 ) ( ( 𝐴 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉  ·  ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ ℎ ) )  =  ( ( ( 𝑥 𝐿 𝑦 ) ‘ ℎ ) ( 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐾 ‘ 𝑥 ) 〉  ·  ( 𝐾 ‘ 𝑦 ) ) ( 𝐴 ‘ 𝑥 ) ) ) ) | 
						
							| 86 | 85 | elrab | ⊢ ( 𝐴  ∈  { 𝑎  ∈  X 𝑥  ∈  𝐵 ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) )  ∣  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∀ ℎ  ∈  ( 𝑥 𝐻 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉  ·  ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ ℎ ) )  =  ( ( ( 𝑥 𝐿 𝑦 ) ‘ ℎ ) ( 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐾 ‘ 𝑥 ) 〉  ·  ( 𝐾 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) }  ↔  ( 𝐴  ∈  X 𝑥  ∈  𝐵 ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) )  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∀ ℎ  ∈  ( 𝑥 𝐻 𝑦 ) ( ( 𝐴 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉  ·  ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ ℎ ) )  =  ( ( ( 𝑥 𝐿 𝑦 ) ‘ ℎ ) ( 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐾 ‘ 𝑥 ) 〉  ·  ( 𝐾 ‘ 𝑦 ) ) ( 𝐴 ‘ 𝑥 ) ) ) ) | 
						
							| 87 | 78 86 | bitrdi | ⊢ ( 𝜑  →  ( 𝐴  ∈  ( 〈 𝐹 ,  𝐺 〉 𝑁 〈 𝐾 ,  𝐿 〉 )  ↔  ( 𝐴  ∈  X 𝑥  ∈  𝐵 ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) )  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∀ ℎ  ∈  ( 𝑥 𝐻 𝑦 ) ( ( 𝐴 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉  ·  ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ ℎ ) )  =  ( ( ( 𝑥 𝐿 𝑦 ) ‘ ℎ ) ( 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐾 ‘ 𝑥 ) 〉  ·  ( 𝐾 ‘ 𝑦 ) ) ( 𝐴 ‘ 𝑥 ) ) ) ) ) |