| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nmofval.1 | ⊢ 𝑁  =  ( 𝑆  normOp  𝑇 ) | 
						
							| 2 | 1 | nghmfval | ⊢ ( 𝑆  NGHom  𝑇 )  =  ( ◡ 𝑁  “  ℝ ) | 
						
							| 3 | 2 | eleq2i | ⊢ ( 𝐹  ∈  ( 𝑆  NGHom  𝑇 )  ↔  𝐹  ∈  ( ◡ 𝑁  “  ℝ ) ) | 
						
							| 4 |  | n0i | ⊢ ( 𝐹  ∈  ( ◡ 𝑁  “  ℝ )  →  ¬  ( ◡ 𝑁  “  ℝ )  =  ∅ ) | 
						
							| 5 |  | nmoffn | ⊢  normOp   Fn  ( NrmGrp  ×  NrmGrp ) | 
						
							| 6 | 5 | fndmi | ⊢ dom   normOp   =  ( NrmGrp  ×  NrmGrp ) | 
						
							| 7 | 6 | ndmov | ⊢ ( ¬  ( 𝑆  ∈  NrmGrp  ∧  𝑇  ∈  NrmGrp )  →  ( 𝑆  normOp  𝑇 )  =  ∅ ) | 
						
							| 8 | 1 7 | eqtrid | ⊢ ( ¬  ( 𝑆  ∈  NrmGrp  ∧  𝑇  ∈  NrmGrp )  →  𝑁  =  ∅ ) | 
						
							| 9 | 8 | cnveqd | ⊢ ( ¬  ( 𝑆  ∈  NrmGrp  ∧  𝑇  ∈  NrmGrp )  →  ◡ 𝑁  =  ◡ ∅ ) | 
						
							| 10 |  | cnv0 | ⊢ ◡ ∅  =  ∅ | 
						
							| 11 | 9 10 | eqtrdi | ⊢ ( ¬  ( 𝑆  ∈  NrmGrp  ∧  𝑇  ∈  NrmGrp )  →  ◡ 𝑁  =  ∅ ) | 
						
							| 12 | 11 | imaeq1d | ⊢ ( ¬  ( 𝑆  ∈  NrmGrp  ∧  𝑇  ∈  NrmGrp )  →  ( ◡ 𝑁  “  ℝ )  =  ( ∅  “  ℝ ) ) | 
						
							| 13 |  | 0ima | ⊢ ( ∅  “  ℝ )  =  ∅ | 
						
							| 14 | 12 13 | eqtrdi | ⊢ ( ¬  ( 𝑆  ∈  NrmGrp  ∧  𝑇  ∈  NrmGrp )  →  ( ◡ 𝑁  “  ℝ )  =  ∅ ) | 
						
							| 15 | 4 14 | nsyl2 | ⊢ ( 𝐹  ∈  ( ◡ 𝑁  “  ℝ )  →  ( 𝑆  ∈  NrmGrp  ∧  𝑇  ∈  NrmGrp ) ) | 
						
							| 16 | 1 | nmof | ⊢ ( ( 𝑆  ∈  NrmGrp  ∧  𝑇  ∈  NrmGrp )  →  𝑁 : ( 𝑆  GrpHom  𝑇 ) ⟶ ℝ* ) | 
						
							| 17 |  | ffn | ⊢ ( 𝑁 : ( 𝑆  GrpHom  𝑇 ) ⟶ ℝ*  →  𝑁  Fn  ( 𝑆  GrpHom  𝑇 ) ) | 
						
							| 18 |  | elpreima | ⊢ ( 𝑁  Fn  ( 𝑆  GrpHom  𝑇 )  →  ( 𝐹  ∈  ( ◡ 𝑁  “  ℝ )  ↔  ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  ( 𝑁 ‘ 𝐹 )  ∈  ℝ ) ) ) | 
						
							| 19 | 16 17 18 | 3syl | ⊢ ( ( 𝑆  ∈  NrmGrp  ∧  𝑇  ∈  NrmGrp )  →  ( 𝐹  ∈  ( ◡ 𝑁  “  ℝ )  ↔  ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  ( 𝑁 ‘ 𝐹 )  ∈  ℝ ) ) ) | 
						
							| 20 | 15 19 | biadanii | ⊢ ( 𝐹  ∈  ( ◡ 𝑁  “  ℝ )  ↔  ( ( 𝑆  ∈  NrmGrp  ∧  𝑇  ∈  NrmGrp )  ∧  ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  ( 𝑁 ‘ 𝐹 )  ∈  ℝ ) ) ) | 
						
							| 21 | 3 20 | bitri | ⊢ ( 𝐹  ∈  ( 𝑆  NGHom  𝑇 )  ↔  ( ( 𝑆  ∈  NrmGrp  ∧  𝑇  ∈  NrmGrp )  ∧  ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  ( 𝑁 ‘ 𝐹 )  ∈  ℝ ) ) ) |