Description: A normed group homomorphism is a group homomorphism with bounded norm. (Contributed by Mario Carneiro, 18-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | nmofval.1 | ⊢ 𝑁 = ( 𝑆 normOp 𝑇 ) | |
Assertion | isnghm2 | ⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ↔ ( 𝑁 ‘ 𝐹 ) ∈ ℝ ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmofval.1 | ⊢ 𝑁 = ( 𝑆 normOp 𝑇 ) | |
2 | 1 | isnghm | ⊢ ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ↔ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) ∧ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ( 𝑁 ‘ 𝐹 ) ∈ ℝ ) ) ) |
3 | 2 | baib | ⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) → ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ↔ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ( 𝑁 ‘ 𝐹 ) ∈ ℝ ) ) ) |
4 | 3 | baibd | ⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ↔ ( 𝑁 ‘ 𝐹 ) ∈ ℝ ) ) |
5 | 4 | 3impa | ⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ↔ ( 𝑁 ‘ 𝐹 ) ∈ ℝ ) ) |