Step |
Hyp |
Ref |
Expression |
1 |
|
nmofval.1 |
⊢ 𝑁 = ( 𝑆 normOp 𝑇 ) |
2 |
1
|
isnghm2 |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ↔ ( 𝑁 ‘ 𝐹 ) ∈ ℝ ) ) |
3 |
1
|
nmocl |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( 𝑁 ‘ 𝐹 ) ∈ ℝ* ) |
4 |
1
|
nmoge0 |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → 0 ≤ ( 𝑁 ‘ 𝐹 ) ) |
5 |
|
ge0gtmnf |
⊢ ( ( ( 𝑁 ‘ 𝐹 ) ∈ ℝ* ∧ 0 ≤ ( 𝑁 ‘ 𝐹 ) ) → -∞ < ( 𝑁 ‘ 𝐹 ) ) |
6 |
3 4 5
|
syl2anc |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → -∞ < ( 𝑁 ‘ 𝐹 ) ) |
7 |
|
xrrebnd |
⊢ ( ( 𝑁 ‘ 𝐹 ) ∈ ℝ* → ( ( 𝑁 ‘ 𝐹 ) ∈ ℝ ↔ ( -∞ < ( 𝑁 ‘ 𝐹 ) ∧ ( 𝑁 ‘ 𝐹 ) < +∞ ) ) ) |
8 |
7
|
baibd |
⊢ ( ( ( 𝑁 ‘ 𝐹 ) ∈ ℝ* ∧ -∞ < ( 𝑁 ‘ 𝐹 ) ) → ( ( 𝑁 ‘ 𝐹 ) ∈ ℝ ↔ ( 𝑁 ‘ 𝐹 ) < +∞ ) ) |
9 |
3 6 8
|
syl2anc |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( ( 𝑁 ‘ 𝐹 ) ∈ ℝ ↔ ( 𝑁 ‘ 𝐹 ) < +∞ ) ) |
10 |
2 9
|
bitrd |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ↔ ( 𝑁 ‘ 𝐹 ) < +∞ ) ) |