| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nmofval.1 | ⊢ 𝑁  =  ( 𝑆  normOp  𝑇 ) | 
						
							| 2 | 1 | isnghm2 | ⊢ ( ( 𝑆  ∈  NrmGrp  ∧  𝑇  ∈  NrmGrp  ∧  𝐹  ∈  ( 𝑆  GrpHom  𝑇 ) )  →  ( 𝐹  ∈  ( 𝑆  NGHom  𝑇 )  ↔  ( 𝑁 ‘ 𝐹 )  ∈  ℝ ) ) | 
						
							| 3 | 1 | nmocl | ⊢ ( ( 𝑆  ∈  NrmGrp  ∧  𝑇  ∈  NrmGrp  ∧  𝐹  ∈  ( 𝑆  GrpHom  𝑇 ) )  →  ( 𝑁 ‘ 𝐹 )  ∈  ℝ* ) | 
						
							| 4 | 1 | nmoge0 | ⊢ ( ( 𝑆  ∈  NrmGrp  ∧  𝑇  ∈  NrmGrp  ∧  𝐹  ∈  ( 𝑆  GrpHom  𝑇 ) )  →  0  ≤  ( 𝑁 ‘ 𝐹 ) ) | 
						
							| 5 |  | ge0gtmnf | ⊢ ( ( ( 𝑁 ‘ 𝐹 )  ∈  ℝ*  ∧  0  ≤  ( 𝑁 ‘ 𝐹 ) )  →  -∞  <  ( 𝑁 ‘ 𝐹 ) ) | 
						
							| 6 | 3 4 5 | syl2anc | ⊢ ( ( 𝑆  ∈  NrmGrp  ∧  𝑇  ∈  NrmGrp  ∧  𝐹  ∈  ( 𝑆  GrpHom  𝑇 ) )  →  -∞  <  ( 𝑁 ‘ 𝐹 ) ) | 
						
							| 7 |  | xrrebnd | ⊢ ( ( 𝑁 ‘ 𝐹 )  ∈  ℝ*  →  ( ( 𝑁 ‘ 𝐹 )  ∈  ℝ  ↔  ( -∞  <  ( 𝑁 ‘ 𝐹 )  ∧  ( 𝑁 ‘ 𝐹 )  <  +∞ ) ) ) | 
						
							| 8 | 7 | baibd | ⊢ ( ( ( 𝑁 ‘ 𝐹 )  ∈  ℝ*  ∧  -∞  <  ( 𝑁 ‘ 𝐹 ) )  →  ( ( 𝑁 ‘ 𝐹 )  ∈  ℝ  ↔  ( 𝑁 ‘ 𝐹 )  <  +∞ ) ) | 
						
							| 9 | 3 6 8 | syl2anc | ⊢ ( ( 𝑆  ∈  NrmGrp  ∧  𝑇  ∈  NrmGrp  ∧  𝐹  ∈  ( 𝑆  GrpHom  𝑇 ) )  →  ( ( 𝑁 ‘ 𝐹 )  ∈  ℝ  ↔  ( 𝑁 ‘ 𝐹 )  <  +∞ ) ) | 
						
							| 10 | 2 9 | bitrd | ⊢ ( ( 𝑆  ∈  NrmGrp  ∧  𝑇  ∈  NrmGrp  ∧  𝐹  ∈  ( 𝑆  GrpHom  𝑇 ) )  →  ( 𝐹  ∈  ( 𝑆  NGHom  𝑇 )  ↔  ( 𝑁 ‘ 𝐹 )  <  +∞ ) ) |