Step |
Hyp |
Ref |
Expression |
1 |
|
isngp.n |
⊢ 𝑁 = ( norm ‘ 𝐺 ) |
2 |
|
isngp.z |
⊢ − = ( -g ‘ 𝐺 ) |
3 |
|
isngp.d |
⊢ 𝐷 = ( dist ‘ 𝐺 ) |
4 |
|
elin |
⊢ ( 𝐺 ∈ ( Grp ∩ MetSp ) ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) ) |
5 |
4
|
anbi1i |
⊢ ( ( 𝐺 ∈ ( Grp ∩ MetSp ) ∧ ( 𝑁 ∘ − ) ⊆ 𝐷 ) ↔ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) ∧ ( 𝑁 ∘ − ) ⊆ 𝐷 ) ) |
6 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( norm ‘ 𝑔 ) = ( norm ‘ 𝐺 ) ) |
7 |
6 1
|
eqtr4di |
⊢ ( 𝑔 = 𝐺 → ( norm ‘ 𝑔 ) = 𝑁 ) |
8 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( -g ‘ 𝑔 ) = ( -g ‘ 𝐺 ) ) |
9 |
8 2
|
eqtr4di |
⊢ ( 𝑔 = 𝐺 → ( -g ‘ 𝑔 ) = − ) |
10 |
7 9
|
coeq12d |
⊢ ( 𝑔 = 𝐺 → ( ( norm ‘ 𝑔 ) ∘ ( -g ‘ 𝑔 ) ) = ( 𝑁 ∘ − ) ) |
11 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( dist ‘ 𝑔 ) = ( dist ‘ 𝐺 ) ) |
12 |
11 3
|
eqtr4di |
⊢ ( 𝑔 = 𝐺 → ( dist ‘ 𝑔 ) = 𝐷 ) |
13 |
10 12
|
sseq12d |
⊢ ( 𝑔 = 𝐺 → ( ( ( norm ‘ 𝑔 ) ∘ ( -g ‘ 𝑔 ) ) ⊆ ( dist ‘ 𝑔 ) ↔ ( 𝑁 ∘ − ) ⊆ 𝐷 ) ) |
14 |
|
df-ngp |
⊢ NrmGrp = { 𝑔 ∈ ( Grp ∩ MetSp ) ∣ ( ( norm ‘ 𝑔 ) ∘ ( -g ‘ 𝑔 ) ) ⊆ ( dist ‘ 𝑔 ) } |
15 |
13 14
|
elrab2 |
⊢ ( 𝐺 ∈ NrmGrp ↔ ( 𝐺 ∈ ( Grp ∩ MetSp ) ∧ ( 𝑁 ∘ − ) ⊆ 𝐷 ) ) |
16 |
|
df-3an |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ( 𝑁 ∘ − ) ⊆ 𝐷 ) ↔ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) ∧ ( 𝑁 ∘ − ) ⊆ 𝐷 ) ) |
17 |
5 15 16
|
3bitr4i |
⊢ ( 𝐺 ∈ NrmGrp ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ( 𝑁 ∘ − ) ⊆ 𝐷 ) ) |