Step |
Hyp |
Ref |
Expression |
1 |
|
ngprcan.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
ngprcan.p |
⊢ + = ( +g ‘ 𝐺 ) |
3 |
|
ngprcan.d |
⊢ 𝐷 = ( dist ‘ 𝐺 ) |
4 |
|
ngpgrp |
⊢ ( 𝐺 ∈ NrmGrp → 𝐺 ∈ Grp ) |
5 |
|
ngpms |
⊢ ( 𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp ) |
6 |
1 2 3
|
ngprcan |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑥 + 𝑧 ) 𝐷 ( 𝑦 + 𝑧 ) ) = ( 𝑥 𝐷 𝑦 ) ) |
7 |
6
|
ralrimivvva |
⊢ ( 𝐺 ∈ NrmGrp → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 + 𝑧 ) 𝐷 ( 𝑦 + 𝑧 ) ) = ( 𝑥 𝐷 𝑦 ) ) |
8 |
4 5 7
|
3jca |
⊢ ( 𝐺 ∈ NrmGrp → ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 + 𝑧 ) 𝐷 ( 𝑦 + 𝑧 ) ) = ( 𝑥 𝐷 𝑦 ) ) ) |
9 |
|
simp1 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 + 𝑧 ) 𝐷 ( 𝑦 + 𝑧 ) ) = ( 𝑥 𝐷 𝑦 ) ) → 𝐺 ∈ Grp ) |
10 |
|
simp2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 + 𝑧 ) 𝐷 ( 𝑦 + 𝑧 ) ) = ( 𝑥 𝐷 𝑦 ) ) → 𝐺 ∈ MetSp ) |
11 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
12 |
1 11
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑋 ) |
13 |
12
|
ad2ant2rl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑋 ) |
14 |
|
eqcom |
⊢ ( ( ( 𝑥 + 𝑧 ) 𝐷 ( 𝑦 + 𝑧 ) ) = ( 𝑥 𝐷 𝑦 ) ↔ ( 𝑥 𝐷 𝑦 ) = ( ( 𝑥 + 𝑧 ) 𝐷 ( 𝑦 + 𝑧 ) ) ) |
15 |
|
oveq2 |
⊢ ( 𝑧 = ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) → ( 𝑥 + 𝑧 ) = ( 𝑥 + ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ) |
16 |
|
oveq2 |
⊢ ( 𝑧 = ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) → ( 𝑦 + 𝑧 ) = ( 𝑦 + ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ) |
17 |
15 16
|
oveq12d |
⊢ ( 𝑧 = ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) → ( ( 𝑥 + 𝑧 ) 𝐷 ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 + ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) 𝐷 ( 𝑦 + ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ) ) |
18 |
17
|
eqeq2d |
⊢ ( 𝑧 = ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) → ( ( 𝑥 𝐷 𝑦 ) = ( ( 𝑥 + 𝑧 ) 𝐷 ( 𝑦 + 𝑧 ) ) ↔ ( 𝑥 𝐷 𝑦 ) = ( ( 𝑥 + ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) 𝐷 ( 𝑦 + ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ) ) ) |
19 |
14 18
|
syl5bb |
⊢ ( 𝑧 = ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) → ( ( ( 𝑥 + 𝑧 ) 𝐷 ( 𝑦 + 𝑧 ) ) = ( 𝑥 𝐷 𝑦 ) ↔ ( 𝑥 𝐷 𝑦 ) = ( ( 𝑥 + ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) 𝐷 ( 𝑦 + ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ) ) ) |
20 |
19
|
rspcv |
⊢ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑋 → ( ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 + 𝑧 ) 𝐷 ( 𝑦 + 𝑧 ) ) = ( 𝑥 𝐷 𝑦 ) → ( 𝑥 𝐷 𝑦 ) = ( ( 𝑥 + ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) 𝐷 ( 𝑦 + ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ) ) ) |
21 |
13 20
|
syl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 + 𝑧 ) 𝐷 ( 𝑦 + 𝑧 ) ) = ( 𝑥 𝐷 𝑦 ) → ( 𝑥 𝐷 𝑦 ) = ( ( 𝑥 + ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) 𝐷 ( 𝑦 + ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ) ) ) |
22 |
|
eqid |
⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) |
23 |
1 2 11 22
|
grpsubval |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) = ( 𝑥 + ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ) |
24 |
23
|
adantl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) = ( 𝑥 + ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ) |
25 |
24
|
eqcomd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 + ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) = ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ) |
26 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
27 |
1 2 26 11
|
grprinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝑋 ) → ( 𝑦 + ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) = ( 0g ‘ 𝐺 ) ) |
28 |
27
|
ad2ant2rl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑦 + ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) = ( 0g ‘ 𝐺 ) ) |
29 |
25 28
|
oveq12d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝑥 + ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) 𝐷 ( 𝑦 + ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ) = ( ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) 𝐷 ( 0g ‘ 𝐺 ) ) ) |
30 |
1 22
|
grpsubcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ∈ 𝑋 ) |
31 |
30
|
3expb |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ∈ 𝑋 ) |
32 |
31
|
adantlr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ∈ 𝑋 ) |
33 |
|
eqid |
⊢ ( norm ‘ 𝐺 ) = ( norm ‘ 𝐺 ) |
34 |
33 1 26 3
|
nmval |
⊢ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ∈ 𝑋 → ( ( norm ‘ 𝐺 ) ‘ ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ) = ( ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) 𝐷 ( 0g ‘ 𝐺 ) ) ) |
35 |
32 34
|
syl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( norm ‘ 𝐺 ) ‘ ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ) = ( ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) 𝐷 ( 0g ‘ 𝐺 ) ) ) |
36 |
29 35
|
eqtr4d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝑥 + ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) 𝐷 ( 𝑦 + ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ) = ( ( norm ‘ 𝐺 ) ‘ ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ) ) |
37 |
36
|
eqeq2d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝑥 𝐷 𝑦 ) = ( ( 𝑥 + ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) 𝐷 ( 𝑦 + ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ) ↔ ( 𝑥 𝐷 𝑦 ) = ( ( norm ‘ 𝐺 ) ‘ ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ) ) ) |
38 |
21 37
|
sylibd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 + 𝑧 ) 𝐷 ( 𝑦 + 𝑧 ) ) = ( 𝑥 𝐷 𝑦 ) → ( 𝑥 𝐷 𝑦 ) = ( ( norm ‘ 𝐺 ) ‘ ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ) ) ) |
39 |
38
|
ralimdvva |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 + 𝑧 ) 𝐷 ( 𝑦 + 𝑧 ) ) = ( 𝑥 𝐷 𝑦 ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) = ( ( norm ‘ 𝐺 ) ‘ ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ) ) ) |
40 |
39
|
3impia |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 + 𝑧 ) 𝐷 ( 𝑦 + 𝑧 ) ) = ( 𝑥 𝐷 𝑦 ) ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) = ( ( norm ‘ 𝐺 ) ‘ ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ) ) |
41 |
33 22 3 1
|
isngp3 |
⊢ ( 𝐺 ∈ NrmGrp ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) = ( ( norm ‘ 𝐺 ) ‘ ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ) ) ) |
42 |
9 10 40 41
|
syl3anbrc |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 + 𝑧 ) 𝐷 ( 𝑦 + 𝑧 ) ) = ( 𝑥 𝐷 𝑦 ) ) → 𝐺 ∈ NrmGrp ) |
43 |
8 42
|
impbii |
⊢ ( 𝐺 ∈ NrmGrp ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 + 𝑧 ) 𝐷 ( 𝑦 + 𝑧 ) ) = ( 𝑥 𝐷 𝑦 ) ) ) |