| Step | Hyp | Ref | Expression | 
						
							| 1 |  | irred.1 | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | irred.2 | ⊢ 𝑈  =  ( Unit ‘ 𝑅 ) | 
						
							| 3 |  | irred.3 | ⊢ 𝐼  =  ( Irred ‘ 𝑅 ) | 
						
							| 4 |  | irred.4 | ⊢ 𝑁  =  ( 𝐵  ∖  𝑈 ) | 
						
							| 5 |  | irred.5 | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 6 | 4 | eleq2i | ⊢ ( 𝑋  ∈  𝑁  ↔  𝑋  ∈  ( 𝐵  ∖  𝑈 ) ) | 
						
							| 7 |  | eldif | ⊢ ( 𝑋  ∈  ( 𝐵  ∖  𝑈 )  ↔  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ∈  𝑈 ) ) | 
						
							| 8 | 6 7 | bitri | ⊢ ( 𝑋  ∈  𝑁  ↔  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ∈  𝑈 ) ) | 
						
							| 9 | 8 | baibr | ⊢ ( 𝑋  ∈  𝐵  →  ( ¬  𝑋  ∈  𝑈  ↔  𝑋  ∈  𝑁 ) ) | 
						
							| 10 |  | df-ne | ⊢ ( ( 𝑥  ·  𝑦 )  ≠  𝑋  ↔  ¬  ( 𝑥  ·  𝑦 )  =  𝑋 ) | 
						
							| 11 | 10 | ralbii | ⊢ ( ∀ 𝑦  ∈  𝑁 ( 𝑥  ·  𝑦 )  ≠  𝑋  ↔  ∀ 𝑦  ∈  𝑁 ¬  ( 𝑥  ·  𝑦 )  =  𝑋 ) | 
						
							| 12 |  | ralnex | ⊢ ( ∀ 𝑦  ∈  𝑁 ¬  ( 𝑥  ·  𝑦 )  =  𝑋  ↔  ¬  ∃ 𝑦  ∈  𝑁 ( 𝑥  ·  𝑦 )  =  𝑋 ) | 
						
							| 13 | 11 12 | bitri | ⊢ ( ∀ 𝑦  ∈  𝑁 ( 𝑥  ·  𝑦 )  ≠  𝑋  ↔  ¬  ∃ 𝑦  ∈  𝑁 ( 𝑥  ·  𝑦 )  =  𝑋 ) | 
						
							| 14 | 13 | ralbii | ⊢ ( ∀ 𝑥  ∈  𝑁 ∀ 𝑦  ∈  𝑁 ( 𝑥  ·  𝑦 )  ≠  𝑋  ↔  ∀ 𝑥  ∈  𝑁 ¬  ∃ 𝑦  ∈  𝑁 ( 𝑥  ·  𝑦 )  =  𝑋 ) | 
						
							| 15 |  | ralnex | ⊢ ( ∀ 𝑥  ∈  𝑁 ¬  ∃ 𝑦  ∈  𝑁 ( 𝑥  ·  𝑦 )  =  𝑋  ↔  ¬  ∃ 𝑥  ∈  𝑁 ∃ 𝑦  ∈  𝑁 ( 𝑥  ·  𝑦 )  =  𝑋 ) | 
						
							| 16 | 14 15 | bitr2i | ⊢ ( ¬  ∃ 𝑥  ∈  𝑁 ∃ 𝑦  ∈  𝑁 ( 𝑥  ·  𝑦 )  =  𝑋  ↔  ∀ 𝑥  ∈  𝑁 ∀ 𝑦  ∈  𝑁 ( 𝑥  ·  𝑦 )  ≠  𝑋 ) | 
						
							| 17 | 16 | a1i | ⊢ ( 𝑋  ∈  𝐵  →  ( ¬  ∃ 𝑥  ∈  𝑁 ∃ 𝑦  ∈  𝑁 ( 𝑥  ·  𝑦 )  =  𝑋  ↔  ∀ 𝑥  ∈  𝑁 ∀ 𝑦  ∈  𝑁 ( 𝑥  ·  𝑦 )  ≠  𝑋 ) ) | 
						
							| 18 | 9 17 | anbi12d | ⊢ ( 𝑋  ∈  𝐵  →  ( ( ¬  𝑋  ∈  𝑈  ∧  ¬  ∃ 𝑥  ∈  𝑁 ∃ 𝑦  ∈  𝑁 ( 𝑥  ·  𝑦 )  =  𝑋 )  ↔  ( 𝑋  ∈  𝑁  ∧  ∀ 𝑥  ∈  𝑁 ∀ 𝑦  ∈  𝑁 ( 𝑥  ·  𝑦 )  ≠  𝑋 ) ) ) | 
						
							| 19 |  | ioran | ⊢ ( ¬  ( 𝑋  ∈  𝑈  ∨  ∃ 𝑥  ∈  𝑁 ∃ 𝑦  ∈  𝑁 ( 𝑥  ·  𝑦 )  =  𝑋 )  ↔  ( ¬  𝑋  ∈  𝑈  ∧  ¬  ∃ 𝑥  ∈  𝑁 ∃ 𝑦  ∈  𝑁 ( 𝑥  ·  𝑦 )  =  𝑋 ) ) | 
						
							| 20 | 1 2 3 4 5 | isirred | ⊢ ( 𝑋  ∈  𝐼  ↔  ( 𝑋  ∈  𝑁  ∧  ∀ 𝑥  ∈  𝑁 ∀ 𝑦  ∈  𝑁 ( 𝑥  ·  𝑦 )  ≠  𝑋 ) ) | 
						
							| 21 | 18 19 20 | 3bitr4g | ⊢ ( 𝑋  ∈  𝐵  →  ( ¬  ( 𝑋  ∈  𝑈  ∨  ∃ 𝑥  ∈  𝑁 ∃ 𝑦  ∈  𝑁 ( 𝑥  ·  𝑦 )  =  𝑋 )  ↔  𝑋  ∈  𝐼 ) ) | 
						
							| 22 | 21 | con1bid | ⊢ ( 𝑋  ∈  𝐵  →  ( ¬  𝑋  ∈  𝐼  ↔  ( 𝑋  ∈  𝑈  ∨  ∃ 𝑥  ∈  𝑁 ∃ 𝑦  ∈  𝑁 ( 𝑥  ·  𝑦 )  =  𝑋 ) ) ) |