Metamath Proof Explorer


Theorem isnlly

Description: The property of being an n-locally A topological space. (Contributed by Mario Carneiro, 2-Mar-2015)

Ref Expression
Assertion isnlly ( 𝐽 ∈ 𝑛-Locally 𝐴 ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥𝐽𝑦𝑥𝑢 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝐽t 𝑢 ) ∈ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 fveq2 ( 𝑗 = 𝐽 → ( nei ‘ 𝑗 ) = ( nei ‘ 𝐽 ) )
2 1 fveq1d ( 𝑗 = 𝐽 → ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) = ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) )
3 2 ineq1d ( 𝑗 = 𝐽 → ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) = ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) )
4 oveq1 ( 𝑗 = 𝐽 → ( 𝑗t 𝑢 ) = ( 𝐽t 𝑢 ) )
5 4 eleq1d ( 𝑗 = 𝐽 → ( ( 𝑗t 𝑢 ) ∈ 𝐴 ↔ ( 𝐽t 𝑢 ) ∈ 𝐴 ) )
6 3 5 rexeqbidv ( 𝑗 = 𝐽 → ( ∃ 𝑢 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝑗t 𝑢 ) ∈ 𝐴 ↔ ∃ 𝑢 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝐽t 𝑢 ) ∈ 𝐴 ) )
7 6 ralbidv ( 𝑗 = 𝐽 → ( ∀ 𝑦𝑥𝑢 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝑗t 𝑢 ) ∈ 𝐴 ↔ ∀ 𝑦𝑥𝑢 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝐽t 𝑢 ) ∈ 𝐴 ) )
8 7 raleqbi1dv ( 𝑗 = 𝐽 → ( ∀ 𝑥𝑗𝑦𝑥𝑢 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝑗t 𝑢 ) ∈ 𝐴 ↔ ∀ 𝑥𝐽𝑦𝑥𝑢 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝐽t 𝑢 ) ∈ 𝐴 ) )
9 df-nlly 𝑛-Locally 𝐴 = { 𝑗 ∈ Top ∣ ∀ 𝑥𝑗𝑦𝑥𝑢 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝑗t 𝑢 ) ∈ 𝐴 }
10 8 9 elrab2 ( 𝐽 ∈ 𝑛-Locally 𝐴 ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥𝐽𝑦𝑥𝑢 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝐽t 𝑢 ) ∈ 𝐴 ) )