Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
⊢ ( 𝑗 = 𝐽 → ( nei ‘ 𝑗 ) = ( nei ‘ 𝐽 ) ) |
2 |
1
|
fveq1d |
⊢ ( 𝑗 = 𝐽 → ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) = ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ) |
3 |
2
|
ineq1d |
⊢ ( 𝑗 = 𝐽 → ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) = ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ) |
4 |
|
oveq1 |
⊢ ( 𝑗 = 𝐽 → ( 𝑗 ↾t 𝑢 ) = ( 𝐽 ↾t 𝑢 ) ) |
5 |
4
|
eleq1d |
⊢ ( 𝑗 = 𝐽 → ( ( 𝑗 ↾t 𝑢 ) ∈ 𝐴 ↔ ( 𝐽 ↾t 𝑢 ) ∈ 𝐴 ) ) |
6 |
3 5
|
rexeqbidv |
⊢ ( 𝑗 = 𝐽 → ( ∃ 𝑢 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝑗 ↾t 𝑢 ) ∈ 𝐴 ↔ ∃ 𝑢 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝐽 ↾t 𝑢 ) ∈ 𝐴 ) ) |
7 |
6
|
ralbidv |
⊢ ( 𝑗 = 𝐽 → ( ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝑗 ↾t 𝑢 ) ∈ 𝐴 ↔ ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝐽 ↾t 𝑢 ) ∈ 𝐴 ) ) |
8 |
7
|
raleqbi1dv |
⊢ ( 𝑗 = 𝐽 → ( ∀ 𝑥 ∈ 𝑗 ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝑗 ↾t 𝑢 ) ∈ 𝐴 ↔ ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝐽 ↾t 𝑢 ) ∈ 𝐴 ) ) |
9 |
|
df-nlly |
⊢ 𝑛-Locally 𝐴 = { 𝑗 ∈ Top ∣ ∀ 𝑥 ∈ 𝑗 ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝑗 ↾t 𝑢 ) ∈ 𝐴 } |
10 |
8 9
|
elrab2 |
⊢ ( 𝐽 ∈ 𝑛-Locally 𝐴 ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝐽 ↾t 𝑢 ) ∈ 𝐴 ) ) |