| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isnlm.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | isnlm.n | ⊢ 𝑁  =  ( norm ‘ 𝑊 ) | 
						
							| 3 |  | isnlm.s | ⊢  ·   =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 4 |  | isnlm.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
						
							| 5 |  | isnlm.k | ⊢ 𝐾  =  ( Base ‘ 𝐹 ) | 
						
							| 6 |  | isnlm.a | ⊢ 𝐴  =  ( norm ‘ 𝐹 ) | 
						
							| 7 |  | anass | ⊢ ( ( ( 𝑊  ∈  ( NrmGrp  ∩  LMod )  ∧  𝐹  ∈  NrmRing )  ∧  ∀ 𝑥  ∈  𝐾 ∀ 𝑦  ∈  𝑉 ( 𝑁 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝐴 ‘ 𝑥 )  ·  ( 𝑁 ‘ 𝑦 ) ) )  ↔  ( 𝑊  ∈  ( NrmGrp  ∩  LMod )  ∧  ( 𝐹  ∈  NrmRing  ∧  ∀ 𝑥  ∈  𝐾 ∀ 𝑦  ∈  𝑉 ( 𝑁 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝐴 ‘ 𝑥 )  ·  ( 𝑁 ‘ 𝑦 ) ) ) ) ) | 
						
							| 8 |  | df-3an | ⊢ ( ( 𝑊  ∈  NrmGrp  ∧  𝑊  ∈  LMod  ∧  𝐹  ∈  NrmRing )  ↔  ( ( 𝑊  ∈  NrmGrp  ∧  𝑊  ∈  LMod )  ∧  𝐹  ∈  NrmRing ) ) | 
						
							| 9 |  | elin | ⊢ ( 𝑊  ∈  ( NrmGrp  ∩  LMod )  ↔  ( 𝑊  ∈  NrmGrp  ∧  𝑊  ∈  LMod ) ) | 
						
							| 10 | 9 | anbi1i | ⊢ ( ( 𝑊  ∈  ( NrmGrp  ∩  LMod )  ∧  𝐹  ∈  NrmRing )  ↔  ( ( 𝑊  ∈  NrmGrp  ∧  𝑊  ∈  LMod )  ∧  𝐹  ∈  NrmRing ) ) | 
						
							| 11 | 8 10 | bitr4i | ⊢ ( ( 𝑊  ∈  NrmGrp  ∧  𝑊  ∈  LMod  ∧  𝐹  ∈  NrmRing )  ↔  ( 𝑊  ∈  ( NrmGrp  ∩  LMod )  ∧  𝐹  ∈  NrmRing ) ) | 
						
							| 12 | 11 | anbi1i | ⊢ ( ( ( 𝑊  ∈  NrmGrp  ∧  𝑊  ∈  LMod  ∧  𝐹  ∈  NrmRing )  ∧  ∀ 𝑥  ∈  𝐾 ∀ 𝑦  ∈  𝑉 ( 𝑁 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝐴 ‘ 𝑥 )  ·  ( 𝑁 ‘ 𝑦 ) ) )  ↔  ( ( 𝑊  ∈  ( NrmGrp  ∩  LMod )  ∧  𝐹  ∈  NrmRing )  ∧  ∀ 𝑥  ∈  𝐾 ∀ 𝑦  ∈  𝑉 ( 𝑁 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝐴 ‘ 𝑥 )  ·  ( 𝑁 ‘ 𝑦 ) ) ) ) | 
						
							| 13 |  | fvexd | ⊢ ( 𝑤  =  𝑊  →  ( Scalar ‘ 𝑤 )  ∈  V ) | 
						
							| 14 |  | id | ⊢ ( 𝑓  =  ( Scalar ‘ 𝑤 )  →  𝑓  =  ( Scalar ‘ 𝑤 ) ) | 
						
							| 15 |  | fveq2 | ⊢ ( 𝑤  =  𝑊  →  ( Scalar ‘ 𝑤 )  =  ( Scalar ‘ 𝑊 ) ) | 
						
							| 16 | 15 4 | eqtr4di | ⊢ ( 𝑤  =  𝑊  →  ( Scalar ‘ 𝑤 )  =  𝐹 ) | 
						
							| 17 | 14 16 | sylan9eqr | ⊢ ( ( 𝑤  =  𝑊  ∧  𝑓  =  ( Scalar ‘ 𝑤 ) )  →  𝑓  =  𝐹 ) | 
						
							| 18 | 17 | eleq1d | ⊢ ( ( 𝑤  =  𝑊  ∧  𝑓  =  ( Scalar ‘ 𝑤 ) )  →  ( 𝑓  ∈  NrmRing  ↔  𝐹  ∈  NrmRing ) ) | 
						
							| 19 | 17 | fveq2d | ⊢ ( ( 𝑤  =  𝑊  ∧  𝑓  =  ( Scalar ‘ 𝑤 ) )  →  ( Base ‘ 𝑓 )  =  ( Base ‘ 𝐹 ) ) | 
						
							| 20 | 19 5 | eqtr4di | ⊢ ( ( 𝑤  =  𝑊  ∧  𝑓  =  ( Scalar ‘ 𝑤 ) )  →  ( Base ‘ 𝑓 )  =  𝐾 ) | 
						
							| 21 |  | simpl | ⊢ ( ( 𝑤  =  𝑊  ∧  𝑓  =  ( Scalar ‘ 𝑤 ) )  →  𝑤  =  𝑊 ) | 
						
							| 22 | 21 | fveq2d | ⊢ ( ( 𝑤  =  𝑊  ∧  𝑓  =  ( Scalar ‘ 𝑤 ) )  →  ( Base ‘ 𝑤 )  =  ( Base ‘ 𝑊 ) ) | 
						
							| 23 | 22 1 | eqtr4di | ⊢ ( ( 𝑤  =  𝑊  ∧  𝑓  =  ( Scalar ‘ 𝑤 ) )  →  ( Base ‘ 𝑤 )  =  𝑉 ) | 
						
							| 24 | 21 | fveq2d | ⊢ ( ( 𝑤  =  𝑊  ∧  𝑓  =  ( Scalar ‘ 𝑤 ) )  →  ( norm ‘ 𝑤 )  =  ( norm ‘ 𝑊 ) ) | 
						
							| 25 | 24 2 | eqtr4di | ⊢ ( ( 𝑤  =  𝑊  ∧  𝑓  =  ( Scalar ‘ 𝑤 ) )  →  ( norm ‘ 𝑤 )  =  𝑁 ) | 
						
							| 26 | 21 | fveq2d | ⊢ ( ( 𝑤  =  𝑊  ∧  𝑓  =  ( Scalar ‘ 𝑤 ) )  →  (  ·𝑠  ‘ 𝑤 )  =  (  ·𝑠  ‘ 𝑊 ) ) | 
						
							| 27 | 26 3 | eqtr4di | ⊢ ( ( 𝑤  =  𝑊  ∧  𝑓  =  ( Scalar ‘ 𝑤 ) )  →  (  ·𝑠  ‘ 𝑤 )  =   ·  ) | 
						
							| 28 | 27 | oveqd | ⊢ ( ( 𝑤  =  𝑊  ∧  𝑓  =  ( Scalar ‘ 𝑤 ) )  →  ( 𝑥 (  ·𝑠  ‘ 𝑤 ) 𝑦 )  =  ( 𝑥  ·  𝑦 ) ) | 
						
							| 29 | 25 28 | fveq12d | ⊢ ( ( 𝑤  =  𝑊  ∧  𝑓  =  ( Scalar ‘ 𝑤 ) )  →  ( ( norm ‘ 𝑤 ) ‘ ( 𝑥 (  ·𝑠  ‘ 𝑤 ) 𝑦 ) )  =  ( 𝑁 ‘ ( 𝑥  ·  𝑦 ) ) ) | 
						
							| 30 | 17 | fveq2d | ⊢ ( ( 𝑤  =  𝑊  ∧  𝑓  =  ( Scalar ‘ 𝑤 ) )  →  ( norm ‘ 𝑓 )  =  ( norm ‘ 𝐹 ) ) | 
						
							| 31 | 30 6 | eqtr4di | ⊢ ( ( 𝑤  =  𝑊  ∧  𝑓  =  ( Scalar ‘ 𝑤 ) )  →  ( norm ‘ 𝑓 )  =  𝐴 ) | 
						
							| 32 | 31 | fveq1d | ⊢ ( ( 𝑤  =  𝑊  ∧  𝑓  =  ( Scalar ‘ 𝑤 ) )  →  ( ( norm ‘ 𝑓 ) ‘ 𝑥 )  =  ( 𝐴 ‘ 𝑥 ) ) | 
						
							| 33 | 25 | fveq1d | ⊢ ( ( 𝑤  =  𝑊  ∧  𝑓  =  ( Scalar ‘ 𝑤 ) )  →  ( ( norm ‘ 𝑤 ) ‘ 𝑦 )  =  ( 𝑁 ‘ 𝑦 ) ) | 
						
							| 34 | 32 33 | oveq12d | ⊢ ( ( 𝑤  =  𝑊  ∧  𝑓  =  ( Scalar ‘ 𝑤 ) )  →  ( ( ( norm ‘ 𝑓 ) ‘ 𝑥 )  ·  ( ( norm ‘ 𝑤 ) ‘ 𝑦 ) )  =  ( ( 𝐴 ‘ 𝑥 )  ·  ( 𝑁 ‘ 𝑦 ) ) ) | 
						
							| 35 | 29 34 | eqeq12d | ⊢ ( ( 𝑤  =  𝑊  ∧  𝑓  =  ( Scalar ‘ 𝑤 ) )  →  ( ( ( norm ‘ 𝑤 ) ‘ ( 𝑥 (  ·𝑠  ‘ 𝑤 ) 𝑦 ) )  =  ( ( ( norm ‘ 𝑓 ) ‘ 𝑥 )  ·  ( ( norm ‘ 𝑤 ) ‘ 𝑦 ) )  ↔  ( 𝑁 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝐴 ‘ 𝑥 )  ·  ( 𝑁 ‘ 𝑦 ) ) ) ) | 
						
							| 36 | 23 35 | raleqbidv | ⊢ ( ( 𝑤  =  𝑊  ∧  𝑓  =  ( Scalar ‘ 𝑤 ) )  →  ( ∀ 𝑦  ∈  ( Base ‘ 𝑤 ) ( ( norm ‘ 𝑤 ) ‘ ( 𝑥 (  ·𝑠  ‘ 𝑤 ) 𝑦 ) )  =  ( ( ( norm ‘ 𝑓 ) ‘ 𝑥 )  ·  ( ( norm ‘ 𝑤 ) ‘ 𝑦 ) )  ↔  ∀ 𝑦  ∈  𝑉 ( 𝑁 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝐴 ‘ 𝑥 )  ·  ( 𝑁 ‘ 𝑦 ) ) ) ) | 
						
							| 37 | 20 36 | raleqbidv | ⊢ ( ( 𝑤  =  𝑊  ∧  𝑓  =  ( Scalar ‘ 𝑤 ) )  →  ( ∀ 𝑥  ∈  ( Base ‘ 𝑓 ) ∀ 𝑦  ∈  ( Base ‘ 𝑤 ) ( ( norm ‘ 𝑤 ) ‘ ( 𝑥 (  ·𝑠  ‘ 𝑤 ) 𝑦 ) )  =  ( ( ( norm ‘ 𝑓 ) ‘ 𝑥 )  ·  ( ( norm ‘ 𝑤 ) ‘ 𝑦 ) )  ↔  ∀ 𝑥  ∈  𝐾 ∀ 𝑦  ∈  𝑉 ( 𝑁 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝐴 ‘ 𝑥 )  ·  ( 𝑁 ‘ 𝑦 ) ) ) ) | 
						
							| 38 | 18 37 | anbi12d | ⊢ ( ( 𝑤  =  𝑊  ∧  𝑓  =  ( Scalar ‘ 𝑤 ) )  →  ( ( 𝑓  ∈  NrmRing  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝑓 ) ∀ 𝑦  ∈  ( Base ‘ 𝑤 ) ( ( norm ‘ 𝑤 ) ‘ ( 𝑥 (  ·𝑠  ‘ 𝑤 ) 𝑦 ) )  =  ( ( ( norm ‘ 𝑓 ) ‘ 𝑥 )  ·  ( ( norm ‘ 𝑤 ) ‘ 𝑦 ) ) )  ↔  ( 𝐹  ∈  NrmRing  ∧  ∀ 𝑥  ∈  𝐾 ∀ 𝑦  ∈  𝑉 ( 𝑁 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝐴 ‘ 𝑥 )  ·  ( 𝑁 ‘ 𝑦 ) ) ) ) ) | 
						
							| 39 | 13 38 | sbcied | ⊢ ( 𝑤  =  𝑊  →  ( [ ( Scalar ‘ 𝑤 )  /  𝑓 ] ( 𝑓  ∈  NrmRing  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝑓 ) ∀ 𝑦  ∈  ( Base ‘ 𝑤 ) ( ( norm ‘ 𝑤 ) ‘ ( 𝑥 (  ·𝑠  ‘ 𝑤 ) 𝑦 ) )  =  ( ( ( norm ‘ 𝑓 ) ‘ 𝑥 )  ·  ( ( norm ‘ 𝑤 ) ‘ 𝑦 ) ) )  ↔  ( 𝐹  ∈  NrmRing  ∧  ∀ 𝑥  ∈  𝐾 ∀ 𝑦  ∈  𝑉 ( 𝑁 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝐴 ‘ 𝑥 )  ·  ( 𝑁 ‘ 𝑦 ) ) ) ) ) | 
						
							| 40 |  | df-nlm | ⊢ NrmMod  =  { 𝑤  ∈  ( NrmGrp  ∩  LMod )  ∣  [ ( Scalar ‘ 𝑤 )  /  𝑓 ] ( 𝑓  ∈  NrmRing  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝑓 ) ∀ 𝑦  ∈  ( Base ‘ 𝑤 ) ( ( norm ‘ 𝑤 ) ‘ ( 𝑥 (  ·𝑠  ‘ 𝑤 ) 𝑦 ) )  =  ( ( ( norm ‘ 𝑓 ) ‘ 𝑥 )  ·  ( ( norm ‘ 𝑤 ) ‘ 𝑦 ) ) ) } | 
						
							| 41 | 39 40 | elrab2 | ⊢ ( 𝑊  ∈  NrmMod  ↔  ( 𝑊  ∈  ( NrmGrp  ∩  LMod )  ∧  ( 𝐹  ∈  NrmRing  ∧  ∀ 𝑥  ∈  𝐾 ∀ 𝑦  ∈  𝑉 ( 𝑁 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝐴 ‘ 𝑥 )  ·  ( 𝑁 ‘ 𝑦 ) ) ) ) ) | 
						
							| 42 | 7 12 41 | 3bitr4ri | ⊢ ( 𝑊  ∈  NrmMod  ↔  ( ( 𝑊  ∈  NrmGrp  ∧  𝑊  ∈  LMod  ∧  𝐹  ∈  NrmRing )  ∧  ∀ 𝑥  ∈  𝐾 ∀ 𝑦  ∈  𝑉 ( 𝑁 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝐴 ‘ 𝑥 )  ·  ( 𝑁 ‘ 𝑦 ) ) ) ) |