Step |
Hyp |
Ref |
Expression |
1 |
|
isnlm.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
isnlm.n |
⊢ 𝑁 = ( norm ‘ 𝑊 ) |
3 |
|
isnlm.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
4 |
|
isnlm.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
5 |
|
isnlm.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
6 |
|
isnlm.a |
⊢ 𝐴 = ( norm ‘ 𝐹 ) |
7 |
|
anass |
⊢ ( ( ( 𝑊 ∈ ( NrmGrp ∩ LMod ) ∧ 𝐹 ∈ NrmRing ) ∧ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝑉 ( 𝑁 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐴 ‘ 𝑥 ) · ( 𝑁 ‘ 𝑦 ) ) ) ↔ ( 𝑊 ∈ ( NrmGrp ∩ LMod ) ∧ ( 𝐹 ∈ NrmRing ∧ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝑉 ( 𝑁 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐴 ‘ 𝑥 ) · ( 𝑁 ‘ 𝑦 ) ) ) ) ) |
8 |
|
df-3an |
⊢ ( ( 𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing ) ↔ ( ( 𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ) ∧ 𝐹 ∈ NrmRing ) ) |
9 |
|
elin |
⊢ ( 𝑊 ∈ ( NrmGrp ∩ LMod ) ↔ ( 𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ) ) |
10 |
9
|
anbi1i |
⊢ ( ( 𝑊 ∈ ( NrmGrp ∩ LMod ) ∧ 𝐹 ∈ NrmRing ) ↔ ( ( 𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ) ∧ 𝐹 ∈ NrmRing ) ) |
11 |
8 10
|
bitr4i |
⊢ ( ( 𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing ) ↔ ( 𝑊 ∈ ( NrmGrp ∩ LMod ) ∧ 𝐹 ∈ NrmRing ) ) |
12 |
11
|
anbi1i |
⊢ ( ( ( 𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing ) ∧ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝑉 ( 𝑁 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐴 ‘ 𝑥 ) · ( 𝑁 ‘ 𝑦 ) ) ) ↔ ( ( 𝑊 ∈ ( NrmGrp ∩ LMod ) ∧ 𝐹 ∈ NrmRing ) ∧ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝑉 ( 𝑁 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐴 ‘ 𝑥 ) · ( 𝑁 ‘ 𝑦 ) ) ) ) |
13 |
|
fvexd |
⊢ ( 𝑤 = 𝑊 → ( Scalar ‘ 𝑤 ) ∈ V ) |
14 |
|
id |
⊢ ( 𝑓 = ( Scalar ‘ 𝑤 ) → 𝑓 = ( Scalar ‘ 𝑤 ) ) |
15 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( Scalar ‘ 𝑤 ) = ( Scalar ‘ 𝑊 ) ) |
16 |
15 4
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( Scalar ‘ 𝑤 ) = 𝐹 ) |
17 |
14 16
|
sylan9eqr |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → 𝑓 = 𝐹 ) |
18 |
17
|
eleq1d |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( 𝑓 ∈ NrmRing ↔ 𝐹 ∈ NrmRing ) ) |
19 |
17
|
fveq2d |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( Base ‘ 𝑓 ) = ( Base ‘ 𝐹 ) ) |
20 |
19 5
|
eqtr4di |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( Base ‘ 𝑓 ) = 𝐾 ) |
21 |
|
simpl |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → 𝑤 = 𝑊 ) |
22 |
21
|
fveq2d |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( Base ‘ 𝑤 ) = ( Base ‘ 𝑊 ) ) |
23 |
22 1
|
eqtr4di |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( Base ‘ 𝑤 ) = 𝑉 ) |
24 |
21
|
fveq2d |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( norm ‘ 𝑤 ) = ( norm ‘ 𝑊 ) ) |
25 |
24 2
|
eqtr4di |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( norm ‘ 𝑤 ) = 𝑁 ) |
26 |
21
|
fveq2d |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( ·𝑠 ‘ 𝑤 ) = ( ·𝑠 ‘ 𝑊 ) ) |
27 |
26 3
|
eqtr4di |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( ·𝑠 ‘ 𝑤 ) = · ) |
28 |
27
|
oveqd |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑦 ) = ( 𝑥 · 𝑦 ) ) |
29 |
25 28
|
fveq12d |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( ( norm ‘ 𝑤 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑦 ) ) = ( 𝑁 ‘ ( 𝑥 · 𝑦 ) ) ) |
30 |
17
|
fveq2d |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( norm ‘ 𝑓 ) = ( norm ‘ 𝐹 ) ) |
31 |
30 6
|
eqtr4di |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( norm ‘ 𝑓 ) = 𝐴 ) |
32 |
31
|
fveq1d |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( ( norm ‘ 𝑓 ) ‘ 𝑥 ) = ( 𝐴 ‘ 𝑥 ) ) |
33 |
25
|
fveq1d |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( ( norm ‘ 𝑤 ) ‘ 𝑦 ) = ( 𝑁 ‘ 𝑦 ) ) |
34 |
32 33
|
oveq12d |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( ( ( norm ‘ 𝑓 ) ‘ 𝑥 ) · ( ( norm ‘ 𝑤 ) ‘ 𝑦 ) ) = ( ( 𝐴 ‘ 𝑥 ) · ( 𝑁 ‘ 𝑦 ) ) ) |
35 |
29 34
|
eqeq12d |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( ( ( norm ‘ 𝑤 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑦 ) ) = ( ( ( norm ‘ 𝑓 ) ‘ 𝑥 ) · ( ( norm ‘ 𝑤 ) ‘ 𝑦 ) ) ↔ ( 𝑁 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐴 ‘ 𝑥 ) · ( 𝑁 ‘ 𝑦 ) ) ) ) |
36 |
23 35
|
raleqbidv |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) ( ( norm ‘ 𝑤 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑦 ) ) = ( ( ( norm ‘ 𝑓 ) ‘ 𝑥 ) · ( ( norm ‘ 𝑤 ) ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝑉 ( 𝑁 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐴 ‘ 𝑥 ) · ( 𝑁 ‘ 𝑦 ) ) ) ) |
37 |
20 36
|
raleqbidv |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝑓 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) ( ( norm ‘ 𝑤 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑦 ) ) = ( ( ( norm ‘ 𝑓 ) ‘ 𝑥 ) · ( ( norm ‘ 𝑤 ) ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝑉 ( 𝑁 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐴 ‘ 𝑥 ) · ( 𝑁 ‘ 𝑦 ) ) ) ) |
38 |
18 37
|
anbi12d |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( ( 𝑓 ∈ NrmRing ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑓 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) ( ( norm ‘ 𝑤 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑦 ) ) = ( ( ( norm ‘ 𝑓 ) ‘ 𝑥 ) · ( ( norm ‘ 𝑤 ) ‘ 𝑦 ) ) ) ↔ ( 𝐹 ∈ NrmRing ∧ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝑉 ( 𝑁 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐴 ‘ 𝑥 ) · ( 𝑁 ‘ 𝑦 ) ) ) ) ) |
39 |
13 38
|
sbcied |
⊢ ( 𝑤 = 𝑊 → ( [ ( Scalar ‘ 𝑤 ) / 𝑓 ] ( 𝑓 ∈ NrmRing ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑓 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) ( ( norm ‘ 𝑤 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑦 ) ) = ( ( ( norm ‘ 𝑓 ) ‘ 𝑥 ) · ( ( norm ‘ 𝑤 ) ‘ 𝑦 ) ) ) ↔ ( 𝐹 ∈ NrmRing ∧ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝑉 ( 𝑁 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐴 ‘ 𝑥 ) · ( 𝑁 ‘ 𝑦 ) ) ) ) ) |
40 |
|
df-nlm |
⊢ NrmMod = { 𝑤 ∈ ( NrmGrp ∩ LMod ) ∣ [ ( Scalar ‘ 𝑤 ) / 𝑓 ] ( 𝑓 ∈ NrmRing ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑓 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) ( ( norm ‘ 𝑤 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑦 ) ) = ( ( ( norm ‘ 𝑓 ) ‘ 𝑥 ) · ( ( norm ‘ 𝑤 ) ‘ 𝑦 ) ) ) } |
41 |
39 40
|
elrab2 |
⊢ ( 𝑊 ∈ NrmMod ↔ ( 𝑊 ∈ ( NrmGrp ∩ LMod ) ∧ ( 𝐹 ∈ NrmRing ∧ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝑉 ( 𝑁 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐴 ‘ 𝑥 ) · ( 𝑁 ‘ 𝑦 ) ) ) ) ) |
42 |
7 12 41
|
3bitr4ri |
⊢ ( 𝑊 ∈ NrmMod ↔ ( ( 𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing ) ∧ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝑉 ( 𝑁 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐴 ‘ 𝑥 ) · ( 𝑁 ‘ 𝑦 ) ) ) ) |