| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isnlm.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
isnlm.n |
⊢ 𝑁 = ( norm ‘ 𝑊 ) |
| 3 |
|
isnlm.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
| 4 |
|
isnlm.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
| 5 |
|
isnlm.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
| 6 |
|
isnlm.a |
⊢ 𝐴 = ( norm ‘ 𝐹 ) |
| 7 |
|
anass |
⊢ ( ( ( 𝑊 ∈ ( NrmGrp ∩ LMod ) ∧ 𝐹 ∈ NrmRing ) ∧ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝑉 ( 𝑁 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐴 ‘ 𝑥 ) · ( 𝑁 ‘ 𝑦 ) ) ) ↔ ( 𝑊 ∈ ( NrmGrp ∩ LMod ) ∧ ( 𝐹 ∈ NrmRing ∧ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝑉 ( 𝑁 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐴 ‘ 𝑥 ) · ( 𝑁 ‘ 𝑦 ) ) ) ) ) |
| 8 |
|
df-3an |
⊢ ( ( 𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing ) ↔ ( ( 𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ) ∧ 𝐹 ∈ NrmRing ) ) |
| 9 |
|
elin |
⊢ ( 𝑊 ∈ ( NrmGrp ∩ LMod ) ↔ ( 𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ) ) |
| 10 |
9
|
anbi1i |
⊢ ( ( 𝑊 ∈ ( NrmGrp ∩ LMod ) ∧ 𝐹 ∈ NrmRing ) ↔ ( ( 𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ) ∧ 𝐹 ∈ NrmRing ) ) |
| 11 |
8 10
|
bitr4i |
⊢ ( ( 𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing ) ↔ ( 𝑊 ∈ ( NrmGrp ∩ LMod ) ∧ 𝐹 ∈ NrmRing ) ) |
| 12 |
11
|
anbi1i |
⊢ ( ( ( 𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing ) ∧ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝑉 ( 𝑁 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐴 ‘ 𝑥 ) · ( 𝑁 ‘ 𝑦 ) ) ) ↔ ( ( 𝑊 ∈ ( NrmGrp ∩ LMod ) ∧ 𝐹 ∈ NrmRing ) ∧ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝑉 ( 𝑁 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐴 ‘ 𝑥 ) · ( 𝑁 ‘ 𝑦 ) ) ) ) |
| 13 |
|
fvexd |
⊢ ( 𝑤 = 𝑊 → ( Scalar ‘ 𝑤 ) ∈ V ) |
| 14 |
|
id |
⊢ ( 𝑓 = ( Scalar ‘ 𝑤 ) → 𝑓 = ( Scalar ‘ 𝑤 ) ) |
| 15 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( Scalar ‘ 𝑤 ) = ( Scalar ‘ 𝑊 ) ) |
| 16 |
15 4
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( Scalar ‘ 𝑤 ) = 𝐹 ) |
| 17 |
14 16
|
sylan9eqr |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → 𝑓 = 𝐹 ) |
| 18 |
17
|
eleq1d |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( 𝑓 ∈ NrmRing ↔ 𝐹 ∈ NrmRing ) ) |
| 19 |
17
|
fveq2d |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( Base ‘ 𝑓 ) = ( Base ‘ 𝐹 ) ) |
| 20 |
19 5
|
eqtr4di |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( Base ‘ 𝑓 ) = 𝐾 ) |
| 21 |
|
simpl |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → 𝑤 = 𝑊 ) |
| 22 |
21
|
fveq2d |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( Base ‘ 𝑤 ) = ( Base ‘ 𝑊 ) ) |
| 23 |
22 1
|
eqtr4di |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( Base ‘ 𝑤 ) = 𝑉 ) |
| 24 |
21
|
fveq2d |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( norm ‘ 𝑤 ) = ( norm ‘ 𝑊 ) ) |
| 25 |
24 2
|
eqtr4di |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( norm ‘ 𝑤 ) = 𝑁 ) |
| 26 |
21
|
fveq2d |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( ·𝑠 ‘ 𝑤 ) = ( ·𝑠 ‘ 𝑊 ) ) |
| 27 |
26 3
|
eqtr4di |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( ·𝑠 ‘ 𝑤 ) = · ) |
| 28 |
27
|
oveqd |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑦 ) = ( 𝑥 · 𝑦 ) ) |
| 29 |
25 28
|
fveq12d |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( ( norm ‘ 𝑤 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑦 ) ) = ( 𝑁 ‘ ( 𝑥 · 𝑦 ) ) ) |
| 30 |
17
|
fveq2d |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( norm ‘ 𝑓 ) = ( norm ‘ 𝐹 ) ) |
| 31 |
30 6
|
eqtr4di |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( norm ‘ 𝑓 ) = 𝐴 ) |
| 32 |
31
|
fveq1d |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( ( norm ‘ 𝑓 ) ‘ 𝑥 ) = ( 𝐴 ‘ 𝑥 ) ) |
| 33 |
25
|
fveq1d |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( ( norm ‘ 𝑤 ) ‘ 𝑦 ) = ( 𝑁 ‘ 𝑦 ) ) |
| 34 |
32 33
|
oveq12d |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( ( ( norm ‘ 𝑓 ) ‘ 𝑥 ) · ( ( norm ‘ 𝑤 ) ‘ 𝑦 ) ) = ( ( 𝐴 ‘ 𝑥 ) · ( 𝑁 ‘ 𝑦 ) ) ) |
| 35 |
29 34
|
eqeq12d |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( ( ( norm ‘ 𝑤 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑦 ) ) = ( ( ( norm ‘ 𝑓 ) ‘ 𝑥 ) · ( ( norm ‘ 𝑤 ) ‘ 𝑦 ) ) ↔ ( 𝑁 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐴 ‘ 𝑥 ) · ( 𝑁 ‘ 𝑦 ) ) ) ) |
| 36 |
23 35
|
raleqbidv |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) ( ( norm ‘ 𝑤 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑦 ) ) = ( ( ( norm ‘ 𝑓 ) ‘ 𝑥 ) · ( ( norm ‘ 𝑤 ) ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝑉 ( 𝑁 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐴 ‘ 𝑥 ) · ( 𝑁 ‘ 𝑦 ) ) ) ) |
| 37 |
20 36
|
raleqbidv |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝑓 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) ( ( norm ‘ 𝑤 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑦 ) ) = ( ( ( norm ‘ 𝑓 ) ‘ 𝑥 ) · ( ( norm ‘ 𝑤 ) ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝑉 ( 𝑁 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐴 ‘ 𝑥 ) · ( 𝑁 ‘ 𝑦 ) ) ) ) |
| 38 |
18 37
|
anbi12d |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( ( 𝑓 ∈ NrmRing ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑓 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) ( ( norm ‘ 𝑤 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑦 ) ) = ( ( ( norm ‘ 𝑓 ) ‘ 𝑥 ) · ( ( norm ‘ 𝑤 ) ‘ 𝑦 ) ) ) ↔ ( 𝐹 ∈ NrmRing ∧ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝑉 ( 𝑁 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐴 ‘ 𝑥 ) · ( 𝑁 ‘ 𝑦 ) ) ) ) ) |
| 39 |
13 38
|
sbcied |
⊢ ( 𝑤 = 𝑊 → ( [ ( Scalar ‘ 𝑤 ) / 𝑓 ] ( 𝑓 ∈ NrmRing ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑓 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) ( ( norm ‘ 𝑤 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑦 ) ) = ( ( ( norm ‘ 𝑓 ) ‘ 𝑥 ) · ( ( norm ‘ 𝑤 ) ‘ 𝑦 ) ) ) ↔ ( 𝐹 ∈ NrmRing ∧ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝑉 ( 𝑁 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐴 ‘ 𝑥 ) · ( 𝑁 ‘ 𝑦 ) ) ) ) ) |
| 40 |
|
df-nlm |
⊢ NrmMod = { 𝑤 ∈ ( NrmGrp ∩ LMod ) ∣ [ ( Scalar ‘ 𝑤 ) / 𝑓 ] ( 𝑓 ∈ NrmRing ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑓 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) ( ( norm ‘ 𝑤 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑦 ) ) = ( ( ( norm ‘ 𝑓 ) ‘ 𝑥 ) · ( ( norm ‘ 𝑤 ) ‘ 𝑦 ) ) ) } |
| 41 |
39 40
|
elrab2 |
⊢ ( 𝑊 ∈ NrmMod ↔ ( 𝑊 ∈ ( NrmGrp ∩ LMod ) ∧ ( 𝐹 ∈ NrmRing ∧ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝑉 ( 𝑁 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐴 ‘ 𝑥 ) · ( 𝑁 ‘ 𝑦 ) ) ) ) ) |
| 42 |
7 12 41
|
3bitr4ri |
⊢ ( 𝑊 ∈ NrmMod ↔ ( ( 𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing ) ∧ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝑉 ( 𝑁 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐴 ‘ 𝑥 ) · ( 𝑁 ‘ 𝑦 ) ) ) ) |