Description: A condition for a structure not to be a magma. (Contributed by AV, 30-Jan-2020) (Proof shortened by NM, 5-Feb-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mgmcl.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
mgmcl.o | ⊢ ⚬ = ( +g ‘ 𝑀 ) | ||
Assertion | isnmgm | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( 𝑋 ⚬ 𝑌 ) ∉ 𝐵 ) → 𝑀 ∉ Mgm ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgmcl.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
2 | mgmcl.o | ⊢ ⚬ = ( +g ‘ 𝑀 ) | |
3 | 1 2 | mgmcl | ⊢ ( ( 𝑀 ∈ Mgm ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ⚬ 𝑌 ) ∈ 𝐵 ) |
4 | 3 | 3expib | ⊢ ( 𝑀 ∈ Mgm → ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ⚬ 𝑌 ) ∈ 𝐵 ) ) |
5 | 4 | com12 | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑀 ∈ Mgm → ( 𝑋 ⚬ 𝑌 ) ∈ 𝐵 ) ) |
6 | 5 | nelcon3d | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ⚬ 𝑌 ) ∉ 𝐵 → 𝑀 ∉ Mgm ) ) |
7 | 6 | 3impia | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( 𝑋 ⚬ 𝑌 ) ∉ 𝐵 ) → 𝑀 ∉ Mgm ) |