Metamath Proof Explorer


Theorem isnmgm

Description: A condition for a structure not to be a magma. (Contributed by AV, 30-Jan-2020) (Proof shortened by NM, 5-Feb-2020)

Ref Expression
Hypotheses mgmcl.b 𝐵 = ( Base ‘ 𝑀 )
mgmcl.o = ( +g𝑀 )
Assertion isnmgm ( ( 𝑋𝐵𝑌𝐵 ∧ ( 𝑋 𝑌 ) ∉ 𝐵 ) → 𝑀 ∉ Mgm )

Proof

Step Hyp Ref Expression
1 mgmcl.b 𝐵 = ( Base ‘ 𝑀 )
2 mgmcl.o = ( +g𝑀 )
3 1 2 mgmcl ( ( 𝑀 ∈ Mgm ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 ) ∈ 𝐵 )
4 3 3expib ( 𝑀 ∈ Mgm → ( ( 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 ) ∈ 𝐵 ) )
5 4 com12 ( ( 𝑋𝐵𝑌𝐵 ) → ( 𝑀 ∈ Mgm → ( 𝑋 𝑌 ) ∈ 𝐵 ) )
6 5 nelcon3d ( ( 𝑋𝐵𝑌𝐵 ) → ( ( 𝑋 𝑌 ) ∉ 𝐵𝑀 ∉ Mgm ) )
7 6 3impia ( ( 𝑋𝐵𝑌𝐵 ∧ ( 𝑋 𝑌 ) ∉ 𝐵 ) → 𝑀 ∉ Mgm )