Step |
Hyp |
Ref |
Expression |
1 |
|
isnmhm2.1 |
⊢ 𝑁 = ( 𝑆 normOp 𝑇 ) |
2 |
|
isnmhm |
⊢ ( 𝐹 ∈ ( 𝑆 NMHom 𝑇 ) ↔ ( ( 𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod ) ∧ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ) ) ) |
3 |
2
|
baib |
⊢ ( ( 𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod ) → ( 𝐹 ∈ ( 𝑆 NMHom 𝑇 ) ↔ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ) ) ) |
4 |
3
|
baibd |
⊢ ( ( ( 𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod ) ∧ 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) → ( 𝐹 ∈ ( 𝑆 NMHom 𝑇 ) ↔ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ) ) |
5 |
|
lmghm |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
6 |
|
nlmngp |
⊢ ( 𝑆 ∈ NrmMod → 𝑆 ∈ NrmGrp ) |
7 |
|
nlmngp |
⊢ ( 𝑇 ∈ NrmMod → 𝑇 ∈ NrmGrp ) |
8 |
1
|
isnghm |
⊢ ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ↔ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) ∧ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ( 𝑁 ‘ 𝐹 ) ∈ ℝ ) ) ) |
9 |
8
|
baib |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) → ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ↔ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ( 𝑁 ‘ 𝐹 ) ∈ ℝ ) ) ) |
10 |
6 7 9
|
syl2an |
⊢ ( ( 𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod ) → ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ↔ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ( 𝑁 ‘ 𝐹 ) ∈ ℝ ) ) ) |
11 |
10
|
baibd |
⊢ ( ( ( 𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod ) ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ↔ ( 𝑁 ‘ 𝐹 ) ∈ ℝ ) ) |
12 |
5 11
|
sylan2 |
⊢ ( ( ( 𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod ) ∧ 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) → ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ↔ ( 𝑁 ‘ 𝐹 ) ∈ ℝ ) ) |
13 |
4 12
|
bitrd |
⊢ ( ( ( 𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod ) ∧ 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) → ( 𝐹 ∈ ( 𝑆 NMHom 𝑇 ) ↔ ( 𝑁 ‘ 𝐹 ) ∈ ℝ ) ) |
14 |
13
|
3impa |
⊢ ( ( 𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod ∧ 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) → ( 𝐹 ∈ ( 𝑆 NMHom 𝑇 ) ↔ ( 𝑁 ‘ 𝐹 ) ∈ ℝ ) ) |