Metamath Proof Explorer


Theorem isnmnd

Description: A condition for a structure not to be a monoid: every element of the base set is not a left identity for at least one element of the base set. (Contributed by AV, 4-Feb-2020)

Ref Expression
Hypotheses isnmnd.b 𝐵 = ( Base ‘ 𝑀 )
isnmnd.o = ( +g𝑀 )
Assertion isnmnd ( ∀ 𝑧𝐵𝑥𝐵 ( 𝑧 𝑥 ) ≠ 𝑥𝑀 ∉ Mnd )

Proof

Step Hyp Ref Expression
1 isnmnd.b 𝐵 = ( Base ‘ 𝑀 )
2 isnmnd.o = ( +g𝑀 )
3 neneq ( ( 𝑧 𝑥 ) ≠ 𝑥 → ¬ ( 𝑧 𝑥 ) = 𝑥 )
4 3 intnanrd ( ( 𝑧 𝑥 ) ≠ 𝑥 → ¬ ( ( 𝑧 𝑥 ) = 𝑥 ∧ ( 𝑥 𝑧 ) = 𝑥 ) )
5 4 reximi ( ∃ 𝑥𝐵 ( 𝑧 𝑥 ) ≠ 𝑥 → ∃ 𝑥𝐵 ¬ ( ( 𝑧 𝑥 ) = 𝑥 ∧ ( 𝑥 𝑧 ) = 𝑥 ) )
6 5 ralimi ( ∀ 𝑧𝐵𝑥𝐵 ( 𝑧 𝑥 ) ≠ 𝑥 → ∀ 𝑧𝐵𝑥𝐵 ¬ ( ( 𝑧 𝑥 ) = 𝑥 ∧ ( 𝑥 𝑧 ) = 𝑥 ) )
7 rexnal ( ∃ 𝑥𝐵 ¬ ( ( 𝑧 𝑥 ) = 𝑥 ∧ ( 𝑥 𝑧 ) = 𝑥 ) ↔ ¬ ∀ 𝑥𝐵 ( ( 𝑧 𝑥 ) = 𝑥 ∧ ( 𝑥 𝑧 ) = 𝑥 ) )
8 7 ralbii ( ∀ 𝑧𝐵𝑥𝐵 ¬ ( ( 𝑧 𝑥 ) = 𝑥 ∧ ( 𝑥 𝑧 ) = 𝑥 ) ↔ ∀ 𝑧𝐵 ¬ ∀ 𝑥𝐵 ( ( 𝑧 𝑥 ) = 𝑥 ∧ ( 𝑥 𝑧 ) = 𝑥 ) )
9 ralnex ( ∀ 𝑧𝐵 ¬ ∀ 𝑥𝐵 ( ( 𝑧 𝑥 ) = 𝑥 ∧ ( 𝑥 𝑧 ) = 𝑥 ) ↔ ¬ ∃ 𝑧𝐵𝑥𝐵 ( ( 𝑧 𝑥 ) = 𝑥 ∧ ( 𝑥 𝑧 ) = 𝑥 ) )
10 8 9 bitri ( ∀ 𝑧𝐵𝑥𝐵 ¬ ( ( 𝑧 𝑥 ) = 𝑥 ∧ ( 𝑥 𝑧 ) = 𝑥 ) ↔ ¬ ∃ 𝑧𝐵𝑥𝐵 ( ( 𝑧 𝑥 ) = 𝑥 ∧ ( 𝑥 𝑧 ) = 𝑥 ) )
11 6 10 sylib ( ∀ 𝑧𝐵𝑥𝐵 ( 𝑧 𝑥 ) ≠ 𝑥 → ¬ ∃ 𝑧𝐵𝑥𝐵 ( ( 𝑧 𝑥 ) = 𝑥 ∧ ( 𝑥 𝑧 ) = 𝑥 ) )
12 11 intnand ( ∀ 𝑧𝐵𝑥𝐵 ( 𝑧 𝑥 ) ≠ 𝑥 → ¬ ( 𝑀 ∈ Smgrp ∧ ∃ 𝑧𝐵𝑥𝐵 ( ( 𝑧 𝑥 ) = 𝑥 ∧ ( 𝑥 𝑧 ) = 𝑥 ) ) )
13 1 2 ismnddef ( 𝑀 ∈ Mnd ↔ ( 𝑀 ∈ Smgrp ∧ ∃ 𝑧𝐵𝑥𝐵 ( ( 𝑧 𝑥 ) = 𝑥 ∧ ( 𝑥 𝑧 ) = 𝑥 ) ) )
14 12 13 sylnibr ( ∀ 𝑧𝐵𝑥𝐵 ( 𝑧 𝑥 ) ≠ 𝑥 → ¬ 𝑀 ∈ Mnd )
15 df-nel ( 𝑀 ∉ Mnd ↔ ¬ 𝑀 ∈ Mnd )
16 14 15 sylibr ( ∀ 𝑧𝐵𝑥𝐵 ( 𝑧 𝑥 ) ≠ 𝑥𝑀 ∉ Mnd )