Step |
Hyp |
Ref |
Expression |
1 |
|
isnmnd.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
2 |
|
isnmnd.o |
⊢ ⚬ = ( +g ‘ 𝑀 ) |
3 |
|
neneq |
⊢ ( ( 𝑧 ⚬ 𝑥 ) ≠ 𝑥 → ¬ ( 𝑧 ⚬ 𝑥 ) = 𝑥 ) |
4 |
3
|
intnanrd |
⊢ ( ( 𝑧 ⚬ 𝑥 ) ≠ 𝑥 → ¬ ( ( 𝑧 ⚬ 𝑥 ) = 𝑥 ∧ ( 𝑥 ⚬ 𝑧 ) = 𝑥 ) ) |
5 |
4
|
reximi |
⊢ ( ∃ 𝑥 ∈ 𝐵 ( 𝑧 ⚬ 𝑥 ) ≠ 𝑥 → ∃ 𝑥 ∈ 𝐵 ¬ ( ( 𝑧 ⚬ 𝑥 ) = 𝑥 ∧ ( 𝑥 ⚬ 𝑧 ) = 𝑥 ) ) |
6 |
5
|
ralimi |
⊢ ( ∀ 𝑧 ∈ 𝐵 ∃ 𝑥 ∈ 𝐵 ( 𝑧 ⚬ 𝑥 ) ≠ 𝑥 → ∀ 𝑧 ∈ 𝐵 ∃ 𝑥 ∈ 𝐵 ¬ ( ( 𝑧 ⚬ 𝑥 ) = 𝑥 ∧ ( 𝑥 ⚬ 𝑧 ) = 𝑥 ) ) |
7 |
|
rexnal |
⊢ ( ∃ 𝑥 ∈ 𝐵 ¬ ( ( 𝑧 ⚬ 𝑥 ) = 𝑥 ∧ ( 𝑥 ⚬ 𝑧 ) = 𝑥 ) ↔ ¬ ∀ 𝑥 ∈ 𝐵 ( ( 𝑧 ⚬ 𝑥 ) = 𝑥 ∧ ( 𝑥 ⚬ 𝑧 ) = 𝑥 ) ) |
8 |
7
|
ralbii |
⊢ ( ∀ 𝑧 ∈ 𝐵 ∃ 𝑥 ∈ 𝐵 ¬ ( ( 𝑧 ⚬ 𝑥 ) = 𝑥 ∧ ( 𝑥 ⚬ 𝑧 ) = 𝑥 ) ↔ ∀ 𝑧 ∈ 𝐵 ¬ ∀ 𝑥 ∈ 𝐵 ( ( 𝑧 ⚬ 𝑥 ) = 𝑥 ∧ ( 𝑥 ⚬ 𝑧 ) = 𝑥 ) ) |
9 |
|
ralnex |
⊢ ( ∀ 𝑧 ∈ 𝐵 ¬ ∀ 𝑥 ∈ 𝐵 ( ( 𝑧 ⚬ 𝑥 ) = 𝑥 ∧ ( 𝑥 ⚬ 𝑧 ) = 𝑥 ) ↔ ¬ ∃ 𝑧 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑧 ⚬ 𝑥 ) = 𝑥 ∧ ( 𝑥 ⚬ 𝑧 ) = 𝑥 ) ) |
10 |
8 9
|
bitri |
⊢ ( ∀ 𝑧 ∈ 𝐵 ∃ 𝑥 ∈ 𝐵 ¬ ( ( 𝑧 ⚬ 𝑥 ) = 𝑥 ∧ ( 𝑥 ⚬ 𝑧 ) = 𝑥 ) ↔ ¬ ∃ 𝑧 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑧 ⚬ 𝑥 ) = 𝑥 ∧ ( 𝑥 ⚬ 𝑧 ) = 𝑥 ) ) |
11 |
6 10
|
sylib |
⊢ ( ∀ 𝑧 ∈ 𝐵 ∃ 𝑥 ∈ 𝐵 ( 𝑧 ⚬ 𝑥 ) ≠ 𝑥 → ¬ ∃ 𝑧 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑧 ⚬ 𝑥 ) = 𝑥 ∧ ( 𝑥 ⚬ 𝑧 ) = 𝑥 ) ) |
12 |
11
|
intnand |
⊢ ( ∀ 𝑧 ∈ 𝐵 ∃ 𝑥 ∈ 𝐵 ( 𝑧 ⚬ 𝑥 ) ≠ 𝑥 → ¬ ( 𝑀 ∈ Smgrp ∧ ∃ 𝑧 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑧 ⚬ 𝑥 ) = 𝑥 ∧ ( 𝑥 ⚬ 𝑧 ) = 𝑥 ) ) ) |
13 |
1 2
|
ismnddef |
⊢ ( 𝑀 ∈ Mnd ↔ ( 𝑀 ∈ Smgrp ∧ ∃ 𝑧 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑧 ⚬ 𝑥 ) = 𝑥 ∧ ( 𝑥 ⚬ 𝑧 ) = 𝑥 ) ) ) |
14 |
12 13
|
sylnibr |
⊢ ( ∀ 𝑧 ∈ 𝐵 ∃ 𝑥 ∈ 𝐵 ( 𝑧 ⚬ 𝑥 ) ≠ 𝑥 → ¬ 𝑀 ∈ Mnd ) |
15 |
|
df-nel |
⊢ ( 𝑀 ∉ Mnd ↔ ¬ 𝑀 ∈ Mnd ) |
16 |
14 15
|
sylibr |
⊢ ( ∀ 𝑧 ∈ 𝐵 ∃ 𝑥 ∈ 𝐵 ( 𝑧 ⚬ 𝑥 ) ≠ 𝑥 → 𝑀 ∉ Mnd ) |