| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isnmnd.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
| 2 |
|
isnmnd.o |
⊢ ⚬ = ( +g ‘ 𝑀 ) |
| 3 |
|
neneq |
⊢ ( ( 𝑧 ⚬ 𝑥 ) ≠ 𝑥 → ¬ ( 𝑧 ⚬ 𝑥 ) = 𝑥 ) |
| 4 |
3
|
intnanrd |
⊢ ( ( 𝑧 ⚬ 𝑥 ) ≠ 𝑥 → ¬ ( ( 𝑧 ⚬ 𝑥 ) = 𝑥 ∧ ( 𝑥 ⚬ 𝑧 ) = 𝑥 ) ) |
| 5 |
4
|
reximi |
⊢ ( ∃ 𝑥 ∈ 𝐵 ( 𝑧 ⚬ 𝑥 ) ≠ 𝑥 → ∃ 𝑥 ∈ 𝐵 ¬ ( ( 𝑧 ⚬ 𝑥 ) = 𝑥 ∧ ( 𝑥 ⚬ 𝑧 ) = 𝑥 ) ) |
| 6 |
5
|
ralimi |
⊢ ( ∀ 𝑧 ∈ 𝐵 ∃ 𝑥 ∈ 𝐵 ( 𝑧 ⚬ 𝑥 ) ≠ 𝑥 → ∀ 𝑧 ∈ 𝐵 ∃ 𝑥 ∈ 𝐵 ¬ ( ( 𝑧 ⚬ 𝑥 ) = 𝑥 ∧ ( 𝑥 ⚬ 𝑧 ) = 𝑥 ) ) |
| 7 |
|
rexnal |
⊢ ( ∃ 𝑥 ∈ 𝐵 ¬ ( ( 𝑧 ⚬ 𝑥 ) = 𝑥 ∧ ( 𝑥 ⚬ 𝑧 ) = 𝑥 ) ↔ ¬ ∀ 𝑥 ∈ 𝐵 ( ( 𝑧 ⚬ 𝑥 ) = 𝑥 ∧ ( 𝑥 ⚬ 𝑧 ) = 𝑥 ) ) |
| 8 |
7
|
ralbii |
⊢ ( ∀ 𝑧 ∈ 𝐵 ∃ 𝑥 ∈ 𝐵 ¬ ( ( 𝑧 ⚬ 𝑥 ) = 𝑥 ∧ ( 𝑥 ⚬ 𝑧 ) = 𝑥 ) ↔ ∀ 𝑧 ∈ 𝐵 ¬ ∀ 𝑥 ∈ 𝐵 ( ( 𝑧 ⚬ 𝑥 ) = 𝑥 ∧ ( 𝑥 ⚬ 𝑧 ) = 𝑥 ) ) |
| 9 |
|
ralnex |
⊢ ( ∀ 𝑧 ∈ 𝐵 ¬ ∀ 𝑥 ∈ 𝐵 ( ( 𝑧 ⚬ 𝑥 ) = 𝑥 ∧ ( 𝑥 ⚬ 𝑧 ) = 𝑥 ) ↔ ¬ ∃ 𝑧 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑧 ⚬ 𝑥 ) = 𝑥 ∧ ( 𝑥 ⚬ 𝑧 ) = 𝑥 ) ) |
| 10 |
8 9
|
bitri |
⊢ ( ∀ 𝑧 ∈ 𝐵 ∃ 𝑥 ∈ 𝐵 ¬ ( ( 𝑧 ⚬ 𝑥 ) = 𝑥 ∧ ( 𝑥 ⚬ 𝑧 ) = 𝑥 ) ↔ ¬ ∃ 𝑧 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑧 ⚬ 𝑥 ) = 𝑥 ∧ ( 𝑥 ⚬ 𝑧 ) = 𝑥 ) ) |
| 11 |
6 10
|
sylib |
⊢ ( ∀ 𝑧 ∈ 𝐵 ∃ 𝑥 ∈ 𝐵 ( 𝑧 ⚬ 𝑥 ) ≠ 𝑥 → ¬ ∃ 𝑧 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑧 ⚬ 𝑥 ) = 𝑥 ∧ ( 𝑥 ⚬ 𝑧 ) = 𝑥 ) ) |
| 12 |
11
|
intnand |
⊢ ( ∀ 𝑧 ∈ 𝐵 ∃ 𝑥 ∈ 𝐵 ( 𝑧 ⚬ 𝑥 ) ≠ 𝑥 → ¬ ( 𝑀 ∈ Smgrp ∧ ∃ 𝑧 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑧 ⚬ 𝑥 ) = 𝑥 ∧ ( 𝑥 ⚬ 𝑧 ) = 𝑥 ) ) ) |
| 13 |
1 2
|
ismnddef |
⊢ ( 𝑀 ∈ Mnd ↔ ( 𝑀 ∈ Smgrp ∧ ∃ 𝑧 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑧 ⚬ 𝑥 ) = 𝑥 ∧ ( 𝑥 ⚬ 𝑧 ) = 𝑥 ) ) ) |
| 14 |
12 13
|
sylnibr |
⊢ ( ∀ 𝑧 ∈ 𝐵 ∃ 𝑥 ∈ 𝐵 ( 𝑧 ⚬ 𝑥 ) ≠ 𝑥 → ¬ 𝑀 ∈ Mnd ) |
| 15 |
|
df-nel |
⊢ ( 𝑀 ∉ Mnd ↔ ¬ 𝑀 ∈ Mnd ) |
| 16 |
14 15
|
sylibr |
⊢ ( ∀ 𝑧 ∈ 𝐵 ∃ 𝑥 ∈ 𝐵 ( 𝑧 ⚬ 𝑥 ) ≠ 𝑥 → 𝑀 ∉ Mnd ) |