| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq2 | ⊢ ( 𝑗  =  𝐽  →  ( Clsd ‘ 𝑗 )  =  ( Clsd ‘ 𝐽 ) ) | 
						
							| 2 | 1 | ineq1d | ⊢ ( 𝑗  =  𝐽  →  ( ( Clsd ‘ 𝑗 )  ∩  𝒫  𝑥 )  =  ( ( Clsd ‘ 𝐽 )  ∩  𝒫  𝑥 ) ) | 
						
							| 3 |  | fveq2 | ⊢ ( 𝑗  =  𝐽  →  ( cls ‘ 𝑗 )  =  ( cls ‘ 𝐽 ) ) | 
						
							| 4 | 3 | fveq1d | ⊢ ( 𝑗  =  𝐽  →  ( ( cls ‘ 𝑗 ) ‘ 𝑧 )  =  ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ) | 
						
							| 5 | 4 | sseq1d | ⊢ ( 𝑗  =  𝐽  →  ( ( ( cls ‘ 𝑗 ) ‘ 𝑧 )  ⊆  𝑥  ↔  ( ( cls ‘ 𝐽 ) ‘ 𝑧 )  ⊆  𝑥 ) ) | 
						
							| 6 | 5 | anbi2d | ⊢ ( 𝑗  =  𝐽  →  ( ( 𝑦  ⊆  𝑧  ∧  ( ( cls ‘ 𝑗 ) ‘ 𝑧 )  ⊆  𝑥 )  ↔  ( 𝑦  ⊆  𝑧  ∧  ( ( cls ‘ 𝐽 ) ‘ 𝑧 )  ⊆  𝑥 ) ) ) | 
						
							| 7 | 6 | rexeqbi1dv | ⊢ ( 𝑗  =  𝐽  →  ( ∃ 𝑧  ∈  𝑗 ( 𝑦  ⊆  𝑧  ∧  ( ( cls ‘ 𝑗 ) ‘ 𝑧 )  ⊆  𝑥 )  ↔  ∃ 𝑧  ∈  𝐽 ( 𝑦  ⊆  𝑧  ∧  ( ( cls ‘ 𝐽 ) ‘ 𝑧 )  ⊆  𝑥 ) ) ) | 
						
							| 8 | 2 7 | raleqbidv | ⊢ ( 𝑗  =  𝐽  →  ( ∀ 𝑦  ∈  ( ( Clsd ‘ 𝑗 )  ∩  𝒫  𝑥 ) ∃ 𝑧  ∈  𝑗 ( 𝑦  ⊆  𝑧  ∧  ( ( cls ‘ 𝑗 ) ‘ 𝑧 )  ⊆  𝑥 )  ↔  ∀ 𝑦  ∈  ( ( Clsd ‘ 𝐽 )  ∩  𝒫  𝑥 ) ∃ 𝑧  ∈  𝐽 ( 𝑦  ⊆  𝑧  ∧  ( ( cls ‘ 𝐽 ) ‘ 𝑧 )  ⊆  𝑥 ) ) ) | 
						
							| 9 | 8 | raleqbi1dv | ⊢ ( 𝑗  =  𝐽  →  ( ∀ 𝑥  ∈  𝑗 ∀ 𝑦  ∈  ( ( Clsd ‘ 𝑗 )  ∩  𝒫  𝑥 ) ∃ 𝑧  ∈  𝑗 ( 𝑦  ⊆  𝑧  ∧  ( ( cls ‘ 𝑗 ) ‘ 𝑧 )  ⊆  𝑥 )  ↔  ∀ 𝑥  ∈  𝐽 ∀ 𝑦  ∈  ( ( Clsd ‘ 𝐽 )  ∩  𝒫  𝑥 ) ∃ 𝑧  ∈  𝐽 ( 𝑦  ⊆  𝑧  ∧  ( ( cls ‘ 𝐽 ) ‘ 𝑧 )  ⊆  𝑥 ) ) ) | 
						
							| 10 |  | df-nrm | ⊢ Nrm  =  { 𝑗  ∈  Top  ∣  ∀ 𝑥  ∈  𝑗 ∀ 𝑦  ∈  ( ( Clsd ‘ 𝑗 )  ∩  𝒫  𝑥 ) ∃ 𝑧  ∈  𝑗 ( 𝑦  ⊆  𝑧  ∧  ( ( cls ‘ 𝑗 ) ‘ 𝑧 )  ⊆  𝑥 ) } | 
						
							| 11 | 9 10 | elrab2 | ⊢ ( 𝐽  ∈  Nrm  ↔  ( 𝐽  ∈  Top  ∧  ∀ 𝑥  ∈  𝐽 ∀ 𝑦  ∈  ( ( Clsd ‘ 𝐽 )  ∩  𝒫  𝑥 ) ∃ 𝑧  ∈  𝐽 ( 𝑦  ⊆  𝑧  ∧  ( ( cls ‘ 𝐽 ) ‘ 𝑧 )  ⊆  𝑥 ) ) ) |