| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nrmtop | ⊢ ( 𝐽  ∈  Nrm  →  𝐽  ∈  Top ) | 
						
							| 2 |  | nrmsep2 | ⊢ ( ( 𝐽  ∈  Nrm  ∧  ( 𝑐  ∈  ( Clsd ‘ 𝐽 )  ∧  𝑑  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑐  ∩  𝑑 )  =  ∅ ) )  →  ∃ 𝑜  ∈  𝐽 ( 𝑐  ⊆  𝑜  ∧  ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  ∩  𝑑 )  =  ∅ ) ) | 
						
							| 3 | 2 | 3exp2 | ⊢ ( 𝐽  ∈  Nrm  →  ( 𝑐  ∈  ( Clsd ‘ 𝐽 )  →  ( 𝑑  ∈  ( Clsd ‘ 𝐽 )  →  ( ( 𝑐  ∩  𝑑 )  =  ∅  →  ∃ 𝑜  ∈  𝐽 ( 𝑐  ⊆  𝑜  ∧  ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  ∩  𝑑 )  =  ∅ ) ) ) ) ) | 
						
							| 4 | 3 | impd | ⊢ ( 𝐽  ∈  Nrm  →  ( ( 𝑐  ∈  ( Clsd ‘ 𝐽 )  ∧  𝑑  ∈  ( Clsd ‘ 𝐽 ) )  →  ( ( 𝑐  ∩  𝑑 )  =  ∅  →  ∃ 𝑜  ∈  𝐽 ( 𝑐  ⊆  𝑜  ∧  ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  ∩  𝑑 )  =  ∅ ) ) ) ) | 
						
							| 5 | 4 | ralrimivv | ⊢ ( 𝐽  ∈  Nrm  →  ∀ 𝑐  ∈  ( Clsd ‘ 𝐽 ) ∀ 𝑑  ∈  ( Clsd ‘ 𝐽 ) ( ( 𝑐  ∩  𝑑 )  =  ∅  →  ∃ 𝑜  ∈  𝐽 ( 𝑐  ⊆  𝑜  ∧  ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  ∩  𝑑 )  =  ∅ ) ) ) | 
						
							| 6 | 1 5 | jca | ⊢ ( 𝐽  ∈  Nrm  →  ( 𝐽  ∈  Top  ∧  ∀ 𝑐  ∈  ( Clsd ‘ 𝐽 ) ∀ 𝑑  ∈  ( Clsd ‘ 𝐽 ) ( ( 𝑐  ∩  𝑑 )  =  ∅  →  ∃ 𝑜  ∈  𝐽 ( 𝑐  ⊆  𝑜  ∧  ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  ∩  𝑑 )  =  ∅ ) ) ) ) | 
						
							| 7 |  | simpl | ⊢ ( ( 𝐽  ∈  Top  ∧  ∀ 𝑐  ∈  ( Clsd ‘ 𝐽 ) ∀ 𝑑  ∈  ( Clsd ‘ 𝐽 ) ( ( 𝑐  ∩  𝑑 )  =  ∅  →  ∃ 𝑜  ∈  𝐽 ( 𝑐  ⊆  𝑜  ∧  ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  ∩  𝑑 )  =  ∅ ) ) )  →  𝐽  ∈  Top ) | 
						
							| 8 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 9 | 8 | opncld | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑥  ∈  𝐽 )  →  ( ∪  𝐽  ∖  𝑥 )  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝑥  ∈  𝐽 )  ∧  𝑐  ∈  ( Clsd ‘ 𝐽 ) )  →  ( ∪  𝐽  ∖  𝑥 )  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 11 |  | ineq2 | ⊢ ( 𝑑  =  ( ∪  𝐽  ∖  𝑥 )  →  ( 𝑐  ∩  𝑑 )  =  ( 𝑐  ∩  ( ∪  𝐽  ∖  𝑥 ) ) ) | 
						
							| 12 | 11 | eqeq1d | ⊢ ( 𝑑  =  ( ∪  𝐽  ∖  𝑥 )  →  ( ( 𝑐  ∩  𝑑 )  =  ∅  ↔  ( 𝑐  ∩  ( ∪  𝐽  ∖  𝑥 ) )  =  ∅ ) ) | 
						
							| 13 |  | ineq2 | ⊢ ( 𝑑  =  ( ∪  𝐽  ∖  𝑥 )  →  ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  ∩  𝑑 )  =  ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  ∩  ( ∪  𝐽  ∖  𝑥 ) ) ) | 
						
							| 14 | 13 | eqeq1d | ⊢ ( 𝑑  =  ( ∪  𝐽  ∖  𝑥 )  →  ( ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  ∩  𝑑 )  =  ∅  ↔  ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  ∩  ( ∪  𝐽  ∖  𝑥 ) )  =  ∅ ) ) | 
						
							| 15 | 14 | anbi2d | ⊢ ( 𝑑  =  ( ∪  𝐽  ∖  𝑥 )  →  ( ( 𝑐  ⊆  𝑜  ∧  ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  ∩  𝑑 )  =  ∅ )  ↔  ( 𝑐  ⊆  𝑜  ∧  ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  ∩  ( ∪  𝐽  ∖  𝑥 ) )  =  ∅ ) ) ) | 
						
							| 16 | 15 | rexbidv | ⊢ ( 𝑑  =  ( ∪  𝐽  ∖  𝑥 )  →  ( ∃ 𝑜  ∈  𝐽 ( 𝑐  ⊆  𝑜  ∧  ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  ∩  𝑑 )  =  ∅ )  ↔  ∃ 𝑜  ∈  𝐽 ( 𝑐  ⊆  𝑜  ∧  ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  ∩  ( ∪  𝐽  ∖  𝑥 ) )  =  ∅ ) ) ) | 
						
							| 17 | 12 16 | imbi12d | ⊢ ( 𝑑  =  ( ∪  𝐽  ∖  𝑥 )  →  ( ( ( 𝑐  ∩  𝑑 )  =  ∅  →  ∃ 𝑜  ∈  𝐽 ( 𝑐  ⊆  𝑜  ∧  ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  ∩  𝑑 )  =  ∅ ) )  ↔  ( ( 𝑐  ∩  ( ∪  𝐽  ∖  𝑥 ) )  =  ∅  →  ∃ 𝑜  ∈  𝐽 ( 𝑐  ⊆  𝑜  ∧  ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  ∩  ( ∪  𝐽  ∖  𝑥 ) )  =  ∅ ) ) ) ) | 
						
							| 18 | 17 | rspcv | ⊢ ( ( ∪  𝐽  ∖  𝑥 )  ∈  ( Clsd ‘ 𝐽 )  →  ( ∀ 𝑑  ∈  ( Clsd ‘ 𝐽 ) ( ( 𝑐  ∩  𝑑 )  =  ∅  →  ∃ 𝑜  ∈  𝐽 ( 𝑐  ⊆  𝑜  ∧  ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  ∩  𝑑 )  =  ∅ ) )  →  ( ( 𝑐  ∩  ( ∪  𝐽  ∖  𝑥 ) )  =  ∅  →  ∃ 𝑜  ∈  𝐽 ( 𝑐  ⊆  𝑜  ∧  ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  ∩  ( ∪  𝐽  ∖  𝑥 ) )  =  ∅ ) ) ) ) | 
						
							| 19 | 10 18 | syl | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝑥  ∈  𝐽 )  ∧  𝑐  ∈  ( Clsd ‘ 𝐽 ) )  →  ( ∀ 𝑑  ∈  ( Clsd ‘ 𝐽 ) ( ( 𝑐  ∩  𝑑 )  =  ∅  →  ∃ 𝑜  ∈  𝐽 ( 𝑐  ⊆  𝑜  ∧  ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  ∩  𝑑 )  =  ∅ ) )  →  ( ( 𝑐  ∩  ( ∪  𝐽  ∖  𝑥 ) )  =  ∅  →  ∃ 𝑜  ∈  𝐽 ( 𝑐  ⊆  𝑜  ∧  ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  ∩  ( ∪  𝐽  ∖  𝑥 ) )  =  ∅ ) ) ) ) | 
						
							| 20 |  | inssdif0 | ⊢ ( ( 𝑐  ∩  ∪  𝐽 )  ⊆  𝑥  ↔  ( 𝑐  ∩  ( ∪  𝐽  ∖  𝑥 ) )  =  ∅ ) | 
						
							| 21 | 8 | cldss | ⊢ ( 𝑐  ∈  ( Clsd ‘ 𝐽 )  →  𝑐  ⊆  ∪  𝐽 ) | 
						
							| 22 | 21 | adantl | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝑥  ∈  𝐽 )  ∧  𝑐  ∈  ( Clsd ‘ 𝐽 ) )  →  𝑐  ⊆  ∪  𝐽 ) | 
						
							| 23 |  | dfss2 | ⊢ ( 𝑐  ⊆  ∪  𝐽  ↔  ( 𝑐  ∩  ∪  𝐽 )  =  𝑐 ) | 
						
							| 24 | 22 23 | sylib | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝑥  ∈  𝐽 )  ∧  𝑐  ∈  ( Clsd ‘ 𝐽 ) )  →  ( 𝑐  ∩  ∪  𝐽 )  =  𝑐 ) | 
						
							| 25 | 24 | sseq1d | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝑥  ∈  𝐽 )  ∧  𝑐  ∈  ( Clsd ‘ 𝐽 ) )  →  ( ( 𝑐  ∩  ∪  𝐽 )  ⊆  𝑥  ↔  𝑐  ⊆  𝑥 ) ) | 
						
							| 26 | 20 25 | bitr3id | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝑥  ∈  𝐽 )  ∧  𝑐  ∈  ( Clsd ‘ 𝐽 ) )  →  ( ( 𝑐  ∩  ( ∪  𝐽  ∖  𝑥 ) )  =  ∅  ↔  𝑐  ⊆  𝑥 ) ) | 
						
							| 27 |  | inssdif0 | ⊢ ( ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  ∩  ∪  𝐽 )  ⊆  𝑥  ↔  ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  ∩  ( ∪  𝐽  ∖  𝑥 ) )  =  ∅ ) | 
						
							| 28 |  | simpll | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝑥  ∈  𝐽 )  ∧  𝑐  ∈  ( Clsd ‘ 𝐽 ) )  →  𝐽  ∈  Top ) | 
						
							| 29 |  | elssuni | ⊢ ( 𝑜  ∈  𝐽  →  𝑜  ⊆  ∪  𝐽 ) | 
						
							| 30 | 8 | clsss3 | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑜  ⊆  ∪  𝐽 )  →  ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  ⊆  ∪  𝐽 ) | 
						
							| 31 | 28 29 30 | syl2an | ⊢ ( ( ( ( 𝐽  ∈  Top  ∧  𝑥  ∈  𝐽 )  ∧  𝑐  ∈  ( Clsd ‘ 𝐽 ) )  ∧  𝑜  ∈  𝐽 )  →  ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  ⊆  ∪  𝐽 ) | 
						
							| 32 |  | dfss2 | ⊢ ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  ⊆  ∪  𝐽  ↔  ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  ∩  ∪  𝐽 )  =  ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ) | 
						
							| 33 | 31 32 | sylib | ⊢ ( ( ( ( 𝐽  ∈  Top  ∧  𝑥  ∈  𝐽 )  ∧  𝑐  ∈  ( Clsd ‘ 𝐽 ) )  ∧  𝑜  ∈  𝐽 )  →  ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  ∩  ∪  𝐽 )  =  ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ) | 
						
							| 34 | 33 | sseq1d | ⊢ ( ( ( ( 𝐽  ∈  Top  ∧  𝑥  ∈  𝐽 )  ∧  𝑐  ∈  ( Clsd ‘ 𝐽 ) )  ∧  𝑜  ∈  𝐽 )  →  ( ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  ∩  ∪  𝐽 )  ⊆  𝑥  ↔  ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  ⊆  𝑥 ) ) | 
						
							| 35 | 27 34 | bitr3id | ⊢ ( ( ( ( 𝐽  ∈  Top  ∧  𝑥  ∈  𝐽 )  ∧  𝑐  ∈  ( Clsd ‘ 𝐽 ) )  ∧  𝑜  ∈  𝐽 )  →  ( ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  ∩  ( ∪  𝐽  ∖  𝑥 ) )  =  ∅  ↔  ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  ⊆  𝑥 ) ) | 
						
							| 36 | 35 | anbi2d | ⊢ ( ( ( ( 𝐽  ∈  Top  ∧  𝑥  ∈  𝐽 )  ∧  𝑐  ∈  ( Clsd ‘ 𝐽 ) )  ∧  𝑜  ∈  𝐽 )  →  ( ( 𝑐  ⊆  𝑜  ∧  ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  ∩  ( ∪  𝐽  ∖  𝑥 ) )  =  ∅ )  ↔  ( 𝑐  ⊆  𝑜  ∧  ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  ⊆  𝑥 ) ) ) | 
						
							| 37 | 36 | rexbidva | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝑥  ∈  𝐽 )  ∧  𝑐  ∈  ( Clsd ‘ 𝐽 ) )  →  ( ∃ 𝑜  ∈  𝐽 ( 𝑐  ⊆  𝑜  ∧  ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  ∩  ( ∪  𝐽  ∖  𝑥 ) )  =  ∅ )  ↔  ∃ 𝑜  ∈  𝐽 ( 𝑐  ⊆  𝑜  ∧  ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  ⊆  𝑥 ) ) ) | 
						
							| 38 | 26 37 | imbi12d | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝑥  ∈  𝐽 )  ∧  𝑐  ∈  ( Clsd ‘ 𝐽 ) )  →  ( ( ( 𝑐  ∩  ( ∪  𝐽  ∖  𝑥 ) )  =  ∅  →  ∃ 𝑜  ∈  𝐽 ( 𝑐  ⊆  𝑜  ∧  ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  ∩  ( ∪  𝐽  ∖  𝑥 ) )  =  ∅ ) )  ↔  ( 𝑐  ⊆  𝑥  →  ∃ 𝑜  ∈  𝐽 ( 𝑐  ⊆  𝑜  ∧  ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  ⊆  𝑥 ) ) ) ) | 
						
							| 39 | 19 38 | sylibd | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝑥  ∈  𝐽 )  ∧  𝑐  ∈  ( Clsd ‘ 𝐽 ) )  →  ( ∀ 𝑑  ∈  ( Clsd ‘ 𝐽 ) ( ( 𝑐  ∩  𝑑 )  =  ∅  →  ∃ 𝑜  ∈  𝐽 ( 𝑐  ⊆  𝑜  ∧  ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  ∩  𝑑 )  =  ∅ ) )  →  ( 𝑐  ⊆  𝑥  →  ∃ 𝑜  ∈  𝐽 ( 𝑐  ⊆  𝑜  ∧  ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  ⊆  𝑥 ) ) ) ) | 
						
							| 40 | 39 | ralimdva | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑥  ∈  𝐽 )  →  ( ∀ 𝑐  ∈  ( Clsd ‘ 𝐽 ) ∀ 𝑑  ∈  ( Clsd ‘ 𝐽 ) ( ( 𝑐  ∩  𝑑 )  =  ∅  →  ∃ 𝑜  ∈  𝐽 ( 𝑐  ⊆  𝑜  ∧  ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  ∩  𝑑 )  =  ∅ ) )  →  ∀ 𝑐  ∈  ( Clsd ‘ 𝐽 ) ( 𝑐  ⊆  𝑥  →  ∃ 𝑜  ∈  𝐽 ( 𝑐  ⊆  𝑜  ∧  ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  ⊆  𝑥 ) ) ) ) | 
						
							| 41 |  | elin | ⊢ ( 𝑐  ∈  ( ( Clsd ‘ 𝐽 )  ∩  𝒫  𝑥 )  ↔  ( 𝑐  ∈  ( Clsd ‘ 𝐽 )  ∧  𝑐  ∈  𝒫  𝑥 ) ) | 
						
							| 42 |  | velpw | ⊢ ( 𝑐  ∈  𝒫  𝑥  ↔  𝑐  ⊆  𝑥 ) | 
						
							| 43 | 42 | anbi2i | ⊢ ( ( 𝑐  ∈  ( Clsd ‘ 𝐽 )  ∧  𝑐  ∈  𝒫  𝑥 )  ↔  ( 𝑐  ∈  ( Clsd ‘ 𝐽 )  ∧  𝑐  ⊆  𝑥 ) ) | 
						
							| 44 | 41 43 | bitri | ⊢ ( 𝑐  ∈  ( ( Clsd ‘ 𝐽 )  ∩  𝒫  𝑥 )  ↔  ( 𝑐  ∈  ( Clsd ‘ 𝐽 )  ∧  𝑐  ⊆  𝑥 ) ) | 
						
							| 45 | 44 | imbi1i | ⊢ ( ( 𝑐  ∈  ( ( Clsd ‘ 𝐽 )  ∩  𝒫  𝑥 )  →  ∃ 𝑜  ∈  𝐽 ( 𝑐  ⊆  𝑜  ∧  ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  ⊆  𝑥 ) )  ↔  ( ( 𝑐  ∈  ( Clsd ‘ 𝐽 )  ∧  𝑐  ⊆  𝑥 )  →  ∃ 𝑜  ∈  𝐽 ( 𝑐  ⊆  𝑜  ∧  ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  ⊆  𝑥 ) ) ) | 
						
							| 46 |  | impexp | ⊢ ( ( ( 𝑐  ∈  ( Clsd ‘ 𝐽 )  ∧  𝑐  ⊆  𝑥 )  →  ∃ 𝑜  ∈  𝐽 ( 𝑐  ⊆  𝑜  ∧  ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  ⊆  𝑥 ) )  ↔  ( 𝑐  ∈  ( Clsd ‘ 𝐽 )  →  ( 𝑐  ⊆  𝑥  →  ∃ 𝑜  ∈  𝐽 ( 𝑐  ⊆  𝑜  ∧  ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  ⊆  𝑥 ) ) ) ) | 
						
							| 47 | 45 46 | bitri | ⊢ ( ( 𝑐  ∈  ( ( Clsd ‘ 𝐽 )  ∩  𝒫  𝑥 )  →  ∃ 𝑜  ∈  𝐽 ( 𝑐  ⊆  𝑜  ∧  ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  ⊆  𝑥 ) )  ↔  ( 𝑐  ∈  ( Clsd ‘ 𝐽 )  →  ( 𝑐  ⊆  𝑥  →  ∃ 𝑜  ∈  𝐽 ( 𝑐  ⊆  𝑜  ∧  ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  ⊆  𝑥 ) ) ) ) | 
						
							| 48 | 47 | ralbii2 | ⊢ ( ∀ 𝑐  ∈  ( ( Clsd ‘ 𝐽 )  ∩  𝒫  𝑥 ) ∃ 𝑜  ∈  𝐽 ( 𝑐  ⊆  𝑜  ∧  ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  ⊆  𝑥 )  ↔  ∀ 𝑐  ∈  ( Clsd ‘ 𝐽 ) ( 𝑐  ⊆  𝑥  →  ∃ 𝑜  ∈  𝐽 ( 𝑐  ⊆  𝑜  ∧  ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  ⊆  𝑥 ) ) ) | 
						
							| 49 | 40 48 | imbitrrdi | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑥  ∈  𝐽 )  →  ( ∀ 𝑐  ∈  ( Clsd ‘ 𝐽 ) ∀ 𝑑  ∈  ( Clsd ‘ 𝐽 ) ( ( 𝑐  ∩  𝑑 )  =  ∅  →  ∃ 𝑜  ∈  𝐽 ( 𝑐  ⊆  𝑜  ∧  ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  ∩  𝑑 )  =  ∅ ) )  →  ∀ 𝑐  ∈  ( ( Clsd ‘ 𝐽 )  ∩  𝒫  𝑥 ) ∃ 𝑜  ∈  𝐽 ( 𝑐  ⊆  𝑜  ∧  ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  ⊆  𝑥 ) ) ) | 
						
							| 50 | 49 | ralrimdva | ⊢ ( 𝐽  ∈  Top  →  ( ∀ 𝑐  ∈  ( Clsd ‘ 𝐽 ) ∀ 𝑑  ∈  ( Clsd ‘ 𝐽 ) ( ( 𝑐  ∩  𝑑 )  =  ∅  →  ∃ 𝑜  ∈  𝐽 ( 𝑐  ⊆  𝑜  ∧  ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  ∩  𝑑 )  =  ∅ ) )  →  ∀ 𝑥  ∈  𝐽 ∀ 𝑐  ∈  ( ( Clsd ‘ 𝐽 )  ∩  𝒫  𝑥 ) ∃ 𝑜  ∈  𝐽 ( 𝑐  ⊆  𝑜  ∧  ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  ⊆  𝑥 ) ) ) | 
						
							| 51 | 50 | imp | ⊢ ( ( 𝐽  ∈  Top  ∧  ∀ 𝑐  ∈  ( Clsd ‘ 𝐽 ) ∀ 𝑑  ∈  ( Clsd ‘ 𝐽 ) ( ( 𝑐  ∩  𝑑 )  =  ∅  →  ∃ 𝑜  ∈  𝐽 ( 𝑐  ⊆  𝑜  ∧  ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  ∩  𝑑 )  =  ∅ ) ) )  →  ∀ 𝑥  ∈  𝐽 ∀ 𝑐  ∈  ( ( Clsd ‘ 𝐽 )  ∩  𝒫  𝑥 ) ∃ 𝑜  ∈  𝐽 ( 𝑐  ⊆  𝑜  ∧  ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  ⊆  𝑥 ) ) | 
						
							| 52 |  | isnrm | ⊢ ( 𝐽  ∈  Nrm  ↔  ( 𝐽  ∈  Top  ∧  ∀ 𝑥  ∈  𝐽 ∀ 𝑐  ∈  ( ( Clsd ‘ 𝐽 )  ∩  𝒫  𝑥 ) ∃ 𝑜  ∈  𝐽 ( 𝑐  ⊆  𝑜  ∧  ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  ⊆  𝑥 ) ) ) | 
						
							| 53 | 7 51 52 | sylanbrc | ⊢ ( ( 𝐽  ∈  Top  ∧  ∀ 𝑐  ∈  ( Clsd ‘ 𝐽 ) ∀ 𝑑  ∈  ( Clsd ‘ 𝐽 ) ( ( 𝑐  ∩  𝑑 )  =  ∅  →  ∃ 𝑜  ∈  𝐽 ( 𝑐  ⊆  𝑜  ∧  ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  ∩  𝑑 )  =  ∅ ) ) )  →  𝐽  ∈  Nrm ) | 
						
							| 54 | 6 53 | impbii | ⊢ ( 𝐽  ∈  Nrm  ↔  ( 𝐽  ∈  Top  ∧  ∀ 𝑐  ∈  ( Clsd ‘ 𝐽 ) ∀ 𝑑  ∈  ( Clsd ‘ 𝐽 ) ( ( 𝑐  ∩  𝑑 )  =  ∅  →  ∃ 𝑜  ∈  𝐽 ( 𝑐  ⊆  𝑜  ∧  ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  ∩  𝑑 )  =  ∅ ) ) ) ) |