Step |
Hyp |
Ref |
Expression |
1 |
|
nrmtop |
⊢ ( 𝐽 ∈ Nrm → 𝐽 ∈ Top ) |
2 |
|
nrmsep2 |
⊢ ( ( 𝐽 ∈ Nrm ∧ ( 𝑐 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑑 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑐 ∩ 𝑑 ) = ∅ ) ) → ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ 𝑑 ) = ∅ ) ) |
3 |
2
|
3exp2 |
⊢ ( 𝐽 ∈ Nrm → ( 𝑐 ∈ ( Clsd ‘ 𝐽 ) → ( 𝑑 ∈ ( Clsd ‘ 𝐽 ) → ( ( 𝑐 ∩ 𝑑 ) = ∅ → ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ 𝑑 ) = ∅ ) ) ) ) ) |
4 |
3
|
impd |
⊢ ( 𝐽 ∈ Nrm → ( ( 𝑐 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑑 ∈ ( Clsd ‘ 𝐽 ) ) → ( ( 𝑐 ∩ 𝑑 ) = ∅ → ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ 𝑑 ) = ∅ ) ) ) ) |
5 |
4
|
ralrimivv |
⊢ ( 𝐽 ∈ Nrm → ∀ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ∀ 𝑑 ∈ ( Clsd ‘ 𝐽 ) ( ( 𝑐 ∩ 𝑑 ) = ∅ → ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ 𝑑 ) = ∅ ) ) ) |
6 |
1 5
|
jca |
⊢ ( 𝐽 ∈ Nrm → ( 𝐽 ∈ Top ∧ ∀ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ∀ 𝑑 ∈ ( Clsd ‘ 𝐽 ) ( ( 𝑐 ∩ 𝑑 ) = ∅ → ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ 𝑑 ) = ∅ ) ) ) ) |
7 |
|
simpl |
⊢ ( ( 𝐽 ∈ Top ∧ ∀ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ∀ 𝑑 ∈ ( Clsd ‘ 𝐽 ) ( ( 𝑐 ∩ 𝑑 ) = ∅ → ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ 𝑑 ) = ∅ ) ) ) → 𝐽 ∈ Top ) |
8 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
9 |
8
|
opncld |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ) → ( ∪ 𝐽 ∖ 𝑥 ) ∈ ( Clsd ‘ 𝐽 ) ) |
10 |
9
|
adantr |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ) ∧ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ) → ( ∪ 𝐽 ∖ 𝑥 ) ∈ ( Clsd ‘ 𝐽 ) ) |
11 |
|
ineq2 |
⊢ ( 𝑑 = ( ∪ 𝐽 ∖ 𝑥 ) → ( 𝑐 ∩ 𝑑 ) = ( 𝑐 ∩ ( ∪ 𝐽 ∖ 𝑥 ) ) ) |
12 |
11
|
eqeq1d |
⊢ ( 𝑑 = ( ∪ 𝐽 ∖ 𝑥 ) → ( ( 𝑐 ∩ 𝑑 ) = ∅ ↔ ( 𝑐 ∩ ( ∪ 𝐽 ∖ 𝑥 ) ) = ∅ ) ) |
13 |
|
ineq2 |
⊢ ( 𝑑 = ( ∪ 𝐽 ∖ 𝑥 ) → ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ 𝑑 ) = ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ ( ∪ 𝐽 ∖ 𝑥 ) ) ) |
14 |
13
|
eqeq1d |
⊢ ( 𝑑 = ( ∪ 𝐽 ∖ 𝑥 ) → ( ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ 𝑑 ) = ∅ ↔ ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ ( ∪ 𝐽 ∖ 𝑥 ) ) = ∅ ) ) |
15 |
14
|
anbi2d |
⊢ ( 𝑑 = ( ∪ 𝐽 ∖ 𝑥 ) → ( ( 𝑐 ⊆ 𝑜 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ 𝑑 ) = ∅ ) ↔ ( 𝑐 ⊆ 𝑜 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ ( ∪ 𝐽 ∖ 𝑥 ) ) = ∅ ) ) ) |
16 |
15
|
rexbidv |
⊢ ( 𝑑 = ( ∪ 𝐽 ∖ 𝑥 ) → ( ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ 𝑑 ) = ∅ ) ↔ ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ ( ∪ 𝐽 ∖ 𝑥 ) ) = ∅ ) ) ) |
17 |
12 16
|
imbi12d |
⊢ ( 𝑑 = ( ∪ 𝐽 ∖ 𝑥 ) → ( ( ( 𝑐 ∩ 𝑑 ) = ∅ → ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ 𝑑 ) = ∅ ) ) ↔ ( ( 𝑐 ∩ ( ∪ 𝐽 ∖ 𝑥 ) ) = ∅ → ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ ( ∪ 𝐽 ∖ 𝑥 ) ) = ∅ ) ) ) ) |
18 |
17
|
rspcv |
⊢ ( ( ∪ 𝐽 ∖ 𝑥 ) ∈ ( Clsd ‘ 𝐽 ) → ( ∀ 𝑑 ∈ ( Clsd ‘ 𝐽 ) ( ( 𝑐 ∩ 𝑑 ) = ∅ → ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ 𝑑 ) = ∅ ) ) → ( ( 𝑐 ∩ ( ∪ 𝐽 ∖ 𝑥 ) ) = ∅ → ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ ( ∪ 𝐽 ∖ 𝑥 ) ) = ∅ ) ) ) ) |
19 |
10 18
|
syl |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ) ∧ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ) → ( ∀ 𝑑 ∈ ( Clsd ‘ 𝐽 ) ( ( 𝑐 ∩ 𝑑 ) = ∅ → ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ 𝑑 ) = ∅ ) ) → ( ( 𝑐 ∩ ( ∪ 𝐽 ∖ 𝑥 ) ) = ∅ → ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ ( ∪ 𝐽 ∖ 𝑥 ) ) = ∅ ) ) ) ) |
20 |
|
inssdif0 |
⊢ ( ( 𝑐 ∩ ∪ 𝐽 ) ⊆ 𝑥 ↔ ( 𝑐 ∩ ( ∪ 𝐽 ∖ 𝑥 ) ) = ∅ ) |
21 |
8
|
cldss |
⊢ ( 𝑐 ∈ ( Clsd ‘ 𝐽 ) → 𝑐 ⊆ ∪ 𝐽 ) |
22 |
21
|
adantl |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ) ∧ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑐 ⊆ ∪ 𝐽 ) |
23 |
|
df-ss |
⊢ ( 𝑐 ⊆ ∪ 𝐽 ↔ ( 𝑐 ∩ ∪ 𝐽 ) = 𝑐 ) |
24 |
22 23
|
sylib |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ) ∧ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑐 ∩ ∪ 𝐽 ) = 𝑐 ) |
25 |
24
|
sseq1d |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ) ∧ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ) → ( ( 𝑐 ∩ ∪ 𝐽 ) ⊆ 𝑥 ↔ 𝑐 ⊆ 𝑥 ) ) |
26 |
20 25
|
bitr3id |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ) ∧ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ) → ( ( 𝑐 ∩ ( ∪ 𝐽 ∖ 𝑥 ) ) = ∅ ↔ 𝑐 ⊆ 𝑥 ) ) |
27 |
|
inssdif0 |
⊢ ( ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ ∪ 𝐽 ) ⊆ 𝑥 ↔ ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ ( ∪ 𝐽 ∖ 𝑥 ) ) = ∅ ) |
28 |
|
simpll |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ) ∧ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ) → 𝐽 ∈ Top ) |
29 |
|
elssuni |
⊢ ( 𝑜 ∈ 𝐽 → 𝑜 ⊆ ∪ 𝐽 ) |
30 |
8
|
clsss3 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑜 ⊆ ∪ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ⊆ ∪ 𝐽 ) |
31 |
28 29 30
|
syl2an |
⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ) ∧ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑜 ∈ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ⊆ ∪ 𝐽 ) |
32 |
|
df-ss |
⊢ ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ⊆ ∪ 𝐽 ↔ ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ ∪ 𝐽 ) = ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ) |
33 |
31 32
|
sylib |
⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ) ∧ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑜 ∈ 𝐽 ) → ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ ∪ 𝐽 ) = ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ) |
34 |
33
|
sseq1d |
⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ) ∧ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑜 ∈ 𝐽 ) → ( ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ ∪ 𝐽 ) ⊆ 𝑥 ↔ ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ⊆ 𝑥 ) ) |
35 |
27 34
|
bitr3id |
⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ) ∧ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑜 ∈ 𝐽 ) → ( ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ ( ∪ 𝐽 ∖ 𝑥 ) ) = ∅ ↔ ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ⊆ 𝑥 ) ) |
36 |
35
|
anbi2d |
⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ) ∧ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑜 ∈ 𝐽 ) → ( ( 𝑐 ⊆ 𝑜 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ ( ∪ 𝐽 ∖ 𝑥 ) ) = ∅ ) ↔ ( 𝑐 ⊆ 𝑜 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ⊆ 𝑥 ) ) ) |
37 |
36
|
rexbidva |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ) ∧ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ) → ( ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ ( ∪ 𝐽 ∖ 𝑥 ) ) = ∅ ) ↔ ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ⊆ 𝑥 ) ) ) |
38 |
26 37
|
imbi12d |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ) ∧ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ) → ( ( ( 𝑐 ∩ ( ∪ 𝐽 ∖ 𝑥 ) ) = ∅ → ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ ( ∪ 𝐽 ∖ 𝑥 ) ) = ∅ ) ) ↔ ( 𝑐 ⊆ 𝑥 → ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ⊆ 𝑥 ) ) ) ) |
39 |
19 38
|
sylibd |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ) ∧ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ) → ( ∀ 𝑑 ∈ ( Clsd ‘ 𝐽 ) ( ( 𝑐 ∩ 𝑑 ) = ∅ → ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ 𝑑 ) = ∅ ) ) → ( 𝑐 ⊆ 𝑥 → ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ⊆ 𝑥 ) ) ) ) |
40 |
39
|
ralimdva |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ) → ( ∀ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ∀ 𝑑 ∈ ( Clsd ‘ 𝐽 ) ( ( 𝑐 ∩ 𝑑 ) = ∅ → ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ 𝑑 ) = ∅ ) ) → ∀ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ( 𝑐 ⊆ 𝑥 → ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ⊆ 𝑥 ) ) ) ) |
41 |
|
elin |
⊢ ( 𝑐 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑥 ) ↔ ( 𝑐 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑐 ∈ 𝒫 𝑥 ) ) |
42 |
|
velpw |
⊢ ( 𝑐 ∈ 𝒫 𝑥 ↔ 𝑐 ⊆ 𝑥 ) |
43 |
42
|
anbi2i |
⊢ ( ( 𝑐 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑐 ∈ 𝒫 𝑥 ) ↔ ( 𝑐 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑐 ⊆ 𝑥 ) ) |
44 |
41 43
|
bitri |
⊢ ( 𝑐 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑥 ) ↔ ( 𝑐 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑐 ⊆ 𝑥 ) ) |
45 |
44
|
imbi1i |
⊢ ( ( 𝑐 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑥 ) → ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ⊆ 𝑥 ) ) ↔ ( ( 𝑐 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑐 ⊆ 𝑥 ) → ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ⊆ 𝑥 ) ) ) |
46 |
|
impexp |
⊢ ( ( ( 𝑐 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑐 ⊆ 𝑥 ) → ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ⊆ 𝑥 ) ) ↔ ( 𝑐 ∈ ( Clsd ‘ 𝐽 ) → ( 𝑐 ⊆ 𝑥 → ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ⊆ 𝑥 ) ) ) ) |
47 |
45 46
|
bitri |
⊢ ( ( 𝑐 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑥 ) → ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ⊆ 𝑥 ) ) ↔ ( 𝑐 ∈ ( Clsd ‘ 𝐽 ) → ( 𝑐 ⊆ 𝑥 → ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ⊆ 𝑥 ) ) ) ) |
48 |
47
|
ralbii2 |
⊢ ( ∀ 𝑐 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑥 ) ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ⊆ 𝑥 ) ↔ ∀ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ( 𝑐 ⊆ 𝑥 → ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ⊆ 𝑥 ) ) ) |
49 |
40 48
|
syl6ibr |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ) → ( ∀ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ∀ 𝑑 ∈ ( Clsd ‘ 𝐽 ) ( ( 𝑐 ∩ 𝑑 ) = ∅ → ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ 𝑑 ) = ∅ ) ) → ∀ 𝑐 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑥 ) ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ⊆ 𝑥 ) ) ) |
50 |
49
|
ralrimdva |
⊢ ( 𝐽 ∈ Top → ( ∀ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ∀ 𝑑 ∈ ( Clsd ‘ 𝐽 ) ( ( 𝑐 ∩ 𝑑 ) = ∅ → ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ 𝑑 ) = ∅ ) ) → ∀ 𝑥 ∈ 𝐽 ∀ 𝑐 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑥 ) ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ⊆ 𝑥 ) ) ) |
51 |
50
|
imp |
⊢ ( ( 𝐽 ∈ Top ∧ ∀ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ∀ 𝑑 ∈ ( Clsd ‘ 𝐽 ) ( ( 𝑐 ∩ 𝑑 ) = ∅ → ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ 𝑑 ) = ∅ ) ) ) → ∀ 𝑥 ∈ 𝐽 ∀ 𝑐 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑥 ) ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ⊆ 𝑥 ) ) |
52 |
|
isnrm |
⊢ ( 𝐽 ∈ Nrm ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ 𝐽 ∀ 𝑐 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑥 ) ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ⊆ 𝑥 ) ) ) |
53 |
7 51 52
|
sylanbrc |
⊢ ( ( 𝐽 ∈ Top ∧ ∀ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ∀ 𝑑 ∈ ( Clsd ‘ 𝐽 ) ( ( 𝑐 ∩ 𝑑 ) = ∅ → ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ 𝑑 ) = ∅ ) ) ) → 𝐽 ∈ Nrm ) |
54 |
6 53
|
impbii |
⊢ ( 𝐽 ∈ Nrm ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ∀ 𝑑 ∈ ( Clsd ‘ 𝐽 ) ( ( 𝑐 ∩ 𝑑 ) = ∅ → ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ 𝑑 ) = ∅ ) ) ) ) |