| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isnsg.1 |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
| 2 |
|
isnsg.2 |
⊢ + = ( +g ‘ 𝐺 ) |
| 3 |
1 2
|
isnsg |
⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ↔ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 + 𝑧 ) ∈ 𝑆 ↔ ( 𝑧 + 𝑥 ) ∈ 𝑆 ) ) ) |
| 4 |
|
dfbi2 |
⊢ ( ( ( 𝑥 + 𝑧 ) ∈ 𝑆 ↔ ( 𝑧 + 𝑥 ) ∈ 𝑆 ) ↔ ( ( ( 𝑥 + 𝑧 ) ∈ 𝑆 → ( 𝑧 + 𝑥 ) ∈ 𝑆 ) ∧ ( ( 𝑧 + 𝑥 ) ∈ 𝑆 → ( 𝑥 + 𝑧 ) ∈ 𝑆 ) ) ) |
| 5 |
4
|
ralbii |
⊢ ( ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 + 𝑧 ) ∈ 𝑆 ↔ ( 𝑧 + 𝑥 ) ∈ 𝑆 ) ↔ ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑥 + 𝑧 ) ∈ 𝑆 → ( 𝑧 + 𝑥 ) ∈ 𝑆 ) ∧ ( ( 𝑧 + 𝑥 ) ∈ 𝑆 → ( 𝑥 + 𝑧 ) ∈ 𝑆 ) ) ) |
| 6 |
5
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 + 𝑧 ) ∈ 𝑆 ↔ ( 𝑧 + 𝑥 ) ∈ 𝑆 ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑥 + 𝑧 ) ∈ 𝑆 → ( 𝑧 + 𝑥 ) ∈ 𝑆 ) ∧ ( ( 𝑧 + 𝑥 ) ∈ 𝑆 → ( 𝑥 + 𝑧 ) ∈ 𝑆 ) ) ) |
| 7 |
|
r19.26-2 |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑥 + 𝑧 ) ∈ 𝑆 → ( 𝑧 + 𝑥 ) ∈ 𝑆 ) ∧ ( ( 𝑧 + 𝑥 ) ∈ 𝑆 → ( 𝑥 + 𝑧 ) ∈ 𝑆 ) ) ↔ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 + 𝑧 ) ∈ 𝑆 → ( 𝑧 + 𝑥 ) ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑧 + 𝑥 ) ∈ 𝑆 → ( 𝑥 + 𝑧 ) ∈ 𝑆 ) ) ) |
| 8 |
6 7
|
bitri |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 + 𝑧 ) ∈ 𝑆 ↔ ( 𝑧 + 𝑥 ) ∈ 𝑆 ) ↔ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 + 𝑧 ) ∈ 𝑆 → ( 𝑧 + 𝑥 ) ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑧 + 𝑥 ) ∈ 𝑆 → ( 𝑥 + 𝑧 ) ∈ 𝑆 ) ) ) |
| 9 |
|
oveq2 |
⊢ ( 𝑧 = 𝑦 → ( 𝑥 + 𝑧 ) = ( 𝑥 + 𝑦 ) ) |
| 10 |
9
|
eleq1d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝑥 + 𝑧 ) ∈ 𝑆 ↔ ( 𝑥 + 𝑦 ) ∈ 𝑆 ) ) |
| 11 |
|
oveq1 |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 + 𝑥 ) = ( 𝑦 + 𝑥 ) ) |
| 12 |
11
|
eleq1d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝑧 + 𝑥 ) ∈ 𝑆 ↔ ( 𝑦 + 𝑥 ) ∈ 𝑆 ) ) |
| 13 |
10 12
|
imbi12d |
⊢ ( 𝑧 = 𝑦 → ( ( ( 𝑥 + 𝑧 ) ∈ 𝑆 → ( 𝑧 + 𝑥 ) ∈ 𝑆 ) ↔ ( ( 𝑥 + 𝑦 ) ∈ 𝑆 → ( 𝑦 + 𝑥 ) ∈ 𝑆 ) ) ) |
| 14 |
13
|
cbvralvw |
⊢ ( ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 + 𝑧 ) ∈ 𝑆 → ( 𝑧 + 𝑥 ) ∈ 𝑆 ) ↔ ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑆 → ( 𝑦 + 𝑥 ) ∈ 𝑆 ) ) |
| 15 |
14
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 + 𝑧 ) ∈ 𝑆 → ( 𝑧 + 𝑥 ) ∈ 𝑆 ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑆 → ( 𝑦 + 𝑥 ) ∈ 𝑆 ) ) |
| 16 |
|
ralcom |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑧 + 𝑥 ) ∈ 𝑆 → ( 𝑥 + 𝑧 ) ∈ 𝑆 ) ↔ ∀ 𝑧 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑧 + 𝑥 ) ∈ 𝑆 → ( 𝑥 + 𝑧 ) ∈ 𝑆 ) ) |
| 17 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑧 + 𝑥 ) = ( 𝑧 + 𝑦 ) ) |
| 18 |
17
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑧 + 𝑥 ) ∈ 𝑆 ↔ ( 𝑧 + 𝑦 ) ∈ 𝑆 ) ) |
| 19 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 + 𝑧 ) = ( 𝑦 + 𝑧 ) ) |
| 20 |
19
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 + 𝑧 ) ∈ 𝑆 ↔ ( 𝑦 + 𝑧 ) ∈ 𝑆 ) ) |
| 21 |
18 20
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑧 + 𝑥 ) ∈ 𝑆 → ( 𝑥 + 𝑧 ) ∈ 𝑆 ) ↔ ( ( 𝑧 + 𝑦 ) ∈ 𝑆 → ( 𝑦 + 𝑧 ) ∈ 𝑆 ) ) ) |
| 22 |
21
|
cbvralvw |
⊢ ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑧 + 𝑥 ) ∈ 𝑆 → ( 𝑥 + 𝑧 ) ∈ 𝑆 ) ↔ ∀ 𝑦 ∈ 𝑋 ( ( 𝑧 + 𝑦 ) ∈ 𝑆 → ( 𝑦 + 𝑧 ) ∈ 𝑆 ) ) |
| 23 |
22
|
ralbii |
⊢ ( ∀ 𝑧 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑧 + 𝑥 ) ∈ 𝑆 → ( 𝑥 + 𝑧 ) ∈ 𝑆 ) ↔ ∀ 𝑧 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑧 + 𝑦 ) ∈ 𝑆 → ( 𝑦 + 𝑧 ) ∈ 𝑆 ) ) |
| 24 |
|
oveq1 |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 + 𝑦 ) = ( 𝑥 + 𝑦 ) ) |
| 25 |
24
|
eleq1d |
⊢ ( 𝑧 = 𝑥 → ( ( 𝑧 + 𝑦 ) ∈ 𝑆 ↔ ( 𝑥 + 𝑦 ) ∈ 𝑆 ) ) |
| 26 |
|
oveq2 |
⊢ ( 𝑧 = 𝑥 → ( 𝑦 + 𝑧 ) = ( 𝑦 + 𝑥 ) ) |
| 27 |
26
|
eleq1d |
⊢ ( 𝑧 = 𝑥 → ( ( 𝑦 + 𝑧 ) ∈ 𝑆 ↔ ( 𝑦 + 𝑥 ) ∈ 𝑆 ) ) |
| 28 |
25 27
|
imbi12d |
⊢ ( 𝑧 = 𝑥 → ( ( ( 𝑧 + 𝑦 ) ∈ 𝑆 → ( 𝑦 + 𝑧 ) ∈ 𝑆 ) ↔ ( ( 𝑥 + 𝑦 ) ∈ 𝑆 → ( 𝑦 + 𝑥 ) ∈ 𝑆 ) ) ) |
| 29 |
28
|
ralbidv |
⊢ ( 𝑧 = 𝑥 → ( ∀ 𝑦 ∈ 𝑋 ( ( 𝑧 + 𝑦 ) ∈ 𝑆 → ( 𝑦 + 𝑧 ) ∈ 𝑆 ) ↔ ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑆 → ( 𝑦 + 𝑥 ) ∈ 𝑆 ) ) ) |
| 30 |
29
|
cbvralvw |
⊢ ( ∀ 𝑧 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑧 + 𝑦 ) ∈ 𝑆 → ( 𝑦 + 𝑧 ) ∈ 𝑆 ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑆 → ( 𝑦 + 𝑥 ) ∈ 𝑆 ) ) |
| 31 |
16 23 30
|
3bitri |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑧 + 𝑥 ) ∈ 𝑆 → ( 𝑥 + 𝑧 ) ∈ 𝑆 ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑆 → ( 𝑦 + 𝑥 ) ∈ 𝑆 ) ) |
| 32 |
15 31
|
anbi12i |
⊢ ( ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 + 𝑧 ) ∈ 𝑆 → ( 𝑧 + 𝑥 ) ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑧 + 𝑥 ) ∈ 𝑆 → ( 𝑥 + 𝑧 ) ∈ 𝑆 ) ) ↔ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑆 → ( 𝑦 + 𝑥 ) ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑆 → ( 𝑦 + 𝑥 ) ∈ 𝑆 ) ) ) |
| 33 |
|
anidm |
⊢ ( ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑆 → ( 𝑦 + 𝑥 ) ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑆 → ( 𝑦 + 𝑥 ) ∈ 𝑆 ) ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑆 → ( 𝑦 + 𝑥 ) ∈ 𝑆 ) ) |
| 34 |
8 32 33
|
3bitri |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 + 𝑧 ) ∈ 𝑆 ↔ ( 𝑧 + 𝑥 ) ∈ 𝑆 ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑆 → ( 𝑦 + 𝑥 ) ∈ 𝑆 ) ) |
| 35 |
34
|
anbi2i |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 + 𝑧 ) ∈ 𝑆 ↔ ( 𝑧 + 𝑥 ) ∈ 𝑆 ) ) ↔ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑆 → ( 𝑦 + 𝑥 ) ∈ 𝑆 ) ) ) |
| 36 |
3 35
|
bitri |
⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ↔ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑆 → ( 𝑦 + 𝑥 ) ∈ 𝑆 ) ) ) |