Metamath Proof Explorer


Theorem isnsg4

Description: A subgroup is normal iff its normalizer is the entire group. (Contributed by Mario Carneiro, 18-Jan-2015)

Ref Expression
Hypotheses elnmz.1 𝑁 = { 𝑥𝑋 ∣ ∀ 𝑦𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑆 ↔ ( 𝑦 + 𝑥 ) ∈ 𝑆 ) }
nmzsubg.2 𝑋 = ( Base ‘ 𝐺 )
nmzsubg.3 + = ( +g𝐺 )
Assertion isnsg4 ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ↔ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑁 = 𝑋 ) )

Proof

Step Hyp Ref Expression
1 elnmz.1 𝑁 = { 𝑥𝑋 ∣ ∀ 𝑦𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑆 ↔ ( 𝑦 + 𝑥 ) ∈ 𝑆 ) }
2 nmzsubg.2 𝑋 = ( Base ‘ 𝐺 )
3 nmzsubg.3 + = ( +g𝐺 )
4 2 3 isnsg ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ↔ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥𝑋𝑦𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑆 ↔ ( 𝑦 + 𝑥 ) ∈ 𝑆 ) ) )
5 eqcom ( 𝑁 = 𝑋𝑋 = 𝑁 )
6 1 eqeq2i ( 𝑋 = 𝑁𝑋 = { 𝑥𝑋 ∣ ∀ 𝑦𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑆 ↔ ( 𝑦 + 𝑥 ) ∈ 𝑆 ) } )
7 rabid2 ( 𝑋 = { 𝑥𝑋 ∣ ∀ 𝑦𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑆 ↔ ( 𝑦 + 𝑥 ) ∈ 𝑆 ) } ↔ ∀ 𝑥𝑋𝑦𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑆 ↔ ( 𝑦 + 𝑥 ) ∈ 𝑆 ) )
8 5 6 7 3bitri ( 𝑁 = 𝑋 ↔ ∀ 𝑥𝑋𝑦𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑆 ↔ ( 𝑦 + 𝑥 ) ∈ 𝑆 ) )
9 8 anbi2i ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑁 = 𝑋 ) ↔ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥𝑋𝑦𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑆 ↔ ( 𝑦 + 𝑥 ) ∈ 𝑆 ) ) )
10 4 9 bitr4i ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ↔ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑁 = 𝑋 ) )