Step |
Hyp |
Ref |
Expression |
1 |
|
issgrpn0.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
2 |
|
issgrpn0.o |
⊢ ⚬ = ( +g ‘ 𝑀 ) |
3 |
|
simpl1 |
⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑍 ) ≠ ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑍 ) ) ) → 𝑋 ∈ 𝐵 ) |
4 |
|
oveq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ⚬ 𝑦 ) = ( 𝑋 ⚬ 𝑦 ) ) |
5 |
4
|
oveq1d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( ( 𝑋 ⚬ 𝑦 ) ⚬ 𝑧 ) ) |
6 |
|
oveq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) = ( 𝑋 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) |
7 |
5 6
|
eqeq12d |
⊢ ( 𝑥 = 𝑋 → ( ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ↔ ( ( 𝑋 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑋 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) ) |
8 |
7
|
notbid |
⊢ ( 𝑥 = 𝑋 → ( ¬ ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ↔ ¬ ( ( 𝑋 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑋 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) ) |
9 |
8
|
rexbidv |
⊢ ( 𝑥 = 𝑋 → ( ∃ 𝑧 ∈ 𝐵 ¬ ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ↔ ∃ 𝑧 ∈ 𝐵 ¬ ( ( 𝑋 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑋 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) ) |
10 |
9
|
rexbidv |
⊢ ( 𝑥 = 𝑋 → ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ¬ ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ↔ ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ¬ ( ( 𝑋 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑋 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) ) |
11 |
10
|
adantl |
⊢ ( ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑍 ) ≠ ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑍 ) ) ) ∧ 𝑥 = 𝑋 ) → ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ¬ ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ↔ ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ¬ ( ( 𝑋 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑋 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) ) |
12 |
|
simpl2 |
⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑍 ) ≠ ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑍 ) ) ) → 𝑌 ∈ 𝐵 ) |
13 |
|
oveq2 |
⊢ ( 𝑦 = 𝑌 → ( 𝑋 ⚬ 𝑦 ) = ( 𝑋 ⚬ 𝑌 ) ) |
14 |
13
|
oveq1d |
⊢ ( 𝑦 = 𝑌 → ( ( 𝑋 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑧 ) ) |
15 |
|
oveq1 |
⊢ ( 𝑦 = 𝑌 → ( 𝑦 ⚬ 𝑧 ) = ( 𝑌 ⚬ 𝑧 ) ) |
16 |
15
|
oveq2d |
⊢ ( 𝑦 = 𝑌 → ( 𝑋 ⚬ ( 𝑦 ⚬ 𝑧 ) ) = ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑧 ) ) ) |
17 |
14 16
|
eqeq12d |
⊢ ( 𝑦 = 𝑌 → ( ( ( 𝑋 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑋 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ↔ ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑧 ) = ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑧 ) ) ) ) |
18 |
17
|
notbid |
⊢ ( 𝑦 = 𝑌 → ( ¬ ( ( 𝑋 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑋 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ↔ ¬ ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑧 ) = ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑧 ) ) ) ) |
19 |
18
|
adantl |
⊢ ( ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑍 ) ≠ ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑍 ) ) ) ∧ 𝑦 = 𝑌 ) → ( ¬ ( ( 𝑋 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑋 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ↔ ¬ ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑧 ) = ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑧 ) ) ) ) |
20 |
19
|
rexbidv |
⊢ ( ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑍 ) ≠ ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑍 ) ) ) ∧ 𝑦 = 𝑌 ) → ( ∃ 𝑧 ∈ 𝐵 ¬ ( ( 𝑋 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑋 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ↔ ∃ 𝑧 ∈ 𝐵 ¬ ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑧 ) = ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑧 ) ) ) ) |
21 |
|
simpl3 |
⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑍 ) ≠ ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑍 ) ) ) → 𝑍 ∈ 𝐵 ) |
22 |
|
oveq2 |
⊢ ( 𝑧 = 𝑍 → ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑧 ) = ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑍 ) ) |
23 |
|
oveq2 |
⊢ ( 𝑧 = 𝑍 → ( 𝑌 ⚬ 𝑧 ) = ( 𝑌 ⚬ 𝑍 ) ) |
24 |
23
|
oveq2d |
⊢ ( 𝑧 = 𝑍 → ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑧 ) ) = ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑍 ) ) ) |
25 |
22 24
|
eqeq12d |
⊢ ( 𝑧 = 𝑍 → ( ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑧 ) = ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑧 ) ) ↔ ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑍 ) = ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑍 ) ) ) ) |
26 |
25
|
notbid |
⊢ ( 𝑧 = 𝑍 → ( ¬ ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑧 ) = ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑧 ) ) ↔ ¬ ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑍 ) = ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑍 ) ) ) ) |
27 |
26
|
adantl |
⊢ ( ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑍 ) ≠ ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑍 ) ) ) ∧ 𝑧 = 𝑍 ) → ( ¬ ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑧 ) = ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑧 ) ) ↔ ¬ ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑍 ) = ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑍 ) ) ) ) |
28 |
|
neneq |
⊢ ( ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑍 ) ≠ ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑍 ) ) → ¬ ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑍 ) = ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑍 ) ) ) |
29 |
28
|
adantl |
⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑍 ) ≠ ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑍 ) ) ) → ¬ ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑍 ) = ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑍 ) ) ) |
30 |
21 27 29
|
rspcedvd |
⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑍 ) ≠ ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑍 ) ) ) → ∃ 𝑧 ∈ 𝐵 ¬ ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑧 ) = ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑧 ) ) ) |
31 |
12 20 30
|
rspcedvd |
⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑍 ) ≠ ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑍 ) ) ) → ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ¬ ( ( 𝑋 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑋 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) |
32 |
3 11 31
|
rspcedvd |
⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑍 ) ≠ ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑍 ) ) ) → ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ¬ ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) |
33 |
|
rexnal |
⊢ ( ∃ 𝑧 ∈ 𝐵 ¬ ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ↔ ¬ ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) |
34 |
33
|
2rexbii |
⊢ ( ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ¬ ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ↔ ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ¬ ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) |
35 |
|
rexnal2 |
⊢ ( ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ¬ ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ↔ ¬ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) |
36 |
34 35
|
bitr2i |
⊢ ( ¬ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ↔ ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ¬ ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) |
37 |
32 36
|
sylibr |
⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑍 ) ≠ ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑍 ) ) ) → ¬ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) |
38 |
37
|
intnand |
⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑍 ) ≠ ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑍 ) ) ) → ¬ ( 𝑀 ∈ Mgm ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) ) |
39 |
1 2
|
issgrp |
⊢ ( 𝑀 ∈ Smgrp ↔ ( 𝑀 ∈ Mgm ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) ) |
40 |
38 39
|
sylnibr |
⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑍 ) ≠ ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑍 ) ) ) → ¬ 𝑀 ∈ Smgrp ) |
41 |
|
df-nel |
⊢ ( 𝑀 ∉ Smgrp ↔ ¬ 𝑀 ∈ Smgrp ) |
42 |
40 41
|
sylibr |
⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑍 ) ≠ ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑍 ) ) ) → 𝑀 ∉ Smgrp ) |
43 |
42
|
ex |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑍 ) ≠ ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑍 ) ) → 𝑀 ∉ Smgrp ) ) |