| Step | Hyp | Ref | Expression | 
						
							| 1 |  | issgrpn0.b | ⊢ 𝐵  =  ( Base ‘ 𝑀 ) | 
						
							| 2 |  | issgrpn0.o | ⊢  ⚬   =  ( +g ‘ 𝑀 ) | 
						
							| 3 |  | simpl1 | ⊢ ( ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  ∧  ( ( 𝑋  ⚬  𝑌 )  ⚬  𝑍 )  ≠  ( 𝑋  ⚬  ( 𝑌  ⚬  𝑍 ) ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 4 |  | oveq1 | ⊢ ( 𝑥  =  𝑋  →  ( 𝑥  ⚬  𝑦 )  =  ( 𝑋  ⚬  𝑦 ) ) | 
						
							| 5 | 4 | oveq1d | ⊢ ( 𝑥  =  𝑋  →  ( ( 𝑥  ⚬  𝑦 )  ⚬  𝑧 )  =  ( ( 𝑋  ⚬  𝑦 )  ⚬  𝑧 ) ) | 
						
							| 6 |  | oveq1 | ⊢ ( 𝑥  =  𝑋  →  ( 𝑥  ⚬  ( 𝑦  ⚬  𝑧 ) )  =  ( 𝑋  ⚬  ( 𝑦  ⚬  𝑧 ) ) ) | 
						
							| 7 | 5 6 | eqeq12d | ⊢ ( 𝑥  =  𝑋  →  ( ( ( 𝑥  ⚬  𝑦 )  ⚬  𝑧 )  =  ( 𝑥  ⚬  ( 𝑦  ⚬  𝑧 ) )  ↔  ( ( 𝑋  ⚬  𝑦 )  ⚬  𝑧 )  =  ( 𝑋  ⚬  ( 𝑦  ⚬  𝑧 ) ) ) ) | 
						
							| 8 | 7 | notbid | ⊢ ( 𝑥  =  𝑋  →  ( ¬  ( ( 𝑥  ⚬  𝑦 )  ⚬  𝑧 )  =  ( 𝑥  ⚬  ( 𝑦  ⚬  𝑧 ) )  ↔  ¬  ( ( 𝑋  ⚬  𝑦 )  ⚬  𝑧 )  =  ( 𝑋  ⚬  ( 𝑦  ⚬  𝑧 ) ) ) ) | 
						
							| 9 | 8 | rexbidv | ⊢ ( 𝑥  =  𝑋  →  ( ∃ 𝑧  ∈  𝐵 ¬  ( ( 𝑥  ⚬  𝑦 )  ⚬  𝑧 )  =  ( 𝑥  ⚬  ( 𝑦  ⚬  𝑧 ) )  ↔  ∃ 𝑧  ∈  𝐵 ¬  ( ( 𝑋  ⚬  𝑦 )  ⚬  𝑧 )  =  ( 𝑋  ⚬  ( 𝑦  ⚬  𝑧 ) ) ) ) | 
						
							| 10 | 9 | rexbidv | ⊢ ( 𝑥  =  𝑋  →  ( ∃ 𝑦  ∈  𝐵 ∃ 𝑧  ∈  𝐵 ¬  ( ( 𝑥  ⚬  𝑦 )  ⚬  𝑧 )  =  ( 𝑥  ⚬  ( 𝑦  ⚬  𝑧 ) )  ↔  ∃ 𝑦  ∈  𝐵 ∃ 𝑧  ∈  𝐵 ¬  ( ( 𝑋  ⚬  𝑦 )  ⚬  𝑧 )  =  ( 𝑋  ⚬  ( 𝑦  ⚬  𝑧 ) ) ) ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  ∧  ( ( 𝑋  ⚬  𝑌 )  ⚬  𝑍 )  ≠  ( 𝑋  ⚬  ( 𝑌  ⚬  𝑍 ) ) )  ∧  𝑥  =  𝑋 )  →  ( ∃ 𝑦  ∈  𝐵 ∃ 𝑧  ∈  𝐵 ¬  ( ( 𝑥  ⚬  𝑦 )  ⚬  𝑧 )  =  ( 𝑥  ⚬  ( 𝑦  ⚬  𝑧 ) )  ↔  ∃ 𝑦  ∈  𝐵 ∃ 𝑧  ∈  𝐵 ¬  ( ( 𝑋  ⚬  𝑦 )  ⚬  𝑧 )  =  ( 𝑋  ⚬  ( 𝑦  ⚬  𝑧 ) ) ) ) | 
						
							| 12 |  | simpl2 | ⊢ ( ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  ∧  ( ( 𝑋  ⚬  𝑌 )  ⚬  𝑍 )  ≠  ( 𝑋  ⚬  ( 𝑌  ⚬  𝑍 ) ) )  →  𝑌  ∈  𝐵 ) | 
						
							| 13 |  | oveq2 | ⊢ ( 𝑦  =  𝑌  →  ( 𝑋  ⚬  𝑦 )  =  ( 𝑋  ⚬  𝑌 ) ) | 
						
							| 14 | 13 | oveq1d | ⊢ ( 𝑦  =  𝑌  →  ( ( 𝑋  ⚬  𝑦 )  ⚬  𝑧 )  =  ( ( 𝑋  ⚬  𝑌 )  ⚬  𝑧 ) ) | 
						
							| 15 |  | oveq1 | ⊢ ( 𝑦  =  𝑌  →  ( 𝑦  ⚬  𝑧 )  =  ( 𝑌  ⚬  𝑧 ) ) | 
						
							| 16 | 15 | oveq2d | ⊢ ( 𝑦  =  𝑌  →  ( 𝑋  ⚬  ( 𝑦  ⚬  𝑧 ) )  =  ( 𝑋  ⚬  ( 𝑌  ⚬  𝑧 ) ) ) | 
						
							| 17 | 14 16 | eqeq12d | ⊢ ( 𝑦  =  𝑌  →  ( ( ( 𝑋  ⚬  𝑦 )  ⚬  𝑧 )  =  ( 𝑋  ⚬  ( 𝑦  ⚬  𝑧 ) )  ↔  ( ( 𝑋  ⚬  𝑌 )  ⚬  𝑧 )  =  ( 𝑋  ⚬  ( 𝑌  ⚬  𝑧 ) ) ) ) | 
						
							| 18 | 17 | notbid | ⊢ ( 𝑦  =  𝑌  →  ( ¬  ( ( 𝑋  ⚬  𝑦 )  ⚬  𝑧 )  =  ( 𝑋  ⚬  ( 𝑦  ⚬  𝑧 ) )  ↔  ¬  ( ( 𝑋  ⚬  𝑌 )  ⚬  𝑧 )  =  ( 𝑋  ⚬  ( 𝑌  ⚬  𝑧 ) ) ) ) | 
						
							| 19 | 18 | adantl | ⊢ ( ( ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  ∧  ( ( 𝑋  ⚬  𝑌 )  ⚬  𝑍 )  ≠  ( 𝑋  ⚬  ( 𝑌  ⚬  𝑍 ) ) )  ∧  𝑦  =  𝑌 )  →  ( ¬  ( ( 𝑋  ⚬  𝑦 )  ⚬  𝑧 )  =  ( 𝑋  ⚬  ( 𝑦  ⚬  𝑧 ) )  ↔  ¬  ( ( 𝑋  ⚬  𝑌 )  ⚬  𝑧 )  =  ( 𝑋  ⚬  ( 𝑌  ⚬  𝑧 ) ) ) ) | 
						
							| 20 | 19 | rexbidv | ⊢ ( ( ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  ∧  ( ( 𝑋  ⚬  𝑌 )  ⚬  𝑍 )  ≠  ( 𝑋  ⚬  ( 𝑌  ⚬  𝑍 ) ) )  ∧  𝑦  =  𝑌 )  →  ( ∃ 𝑧  ∈  𝐵 ¬  ( ( 𝑋  ⚬  𝑦 )  ⚬  𝑧 )  =  ( 𝑋  ⚬  ( 𝑦  ⚬  𝑧 ) )  ↔  ∃ 𝑧  ∈  𝐵 ¬  ( ( 𝑋  ⚬  𝑌 )  ⚬  𝑧 )  =  ( 𝑋  ⚬  ( 𝑌  ⚬  𝑧 ) ) ) ) | 
						
							| 21 |  | simpl3 | ⊢ ( ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  ∧  ( ( 𝑋  ⚬  𝑌 )  ⚬  𝑍 )  ≠  ( 𝑋  ⚬  ( 𝑌  ⚬  𝑍 ) ) )  →  𝑍  ∈  𝐵 ) | 
						
							| 22 |  | oveq2 | ⊢ ( 𝑧  =  𝑍  →  ( ( 𝑋  ⚬  𝑌 )  ⚬  𝑧 )  =  ( ( 𝑋  ⚬  𝑌 )  ⚬  𝑍 ) ) | 
						
							| 23 |  | oveq2 | ⊢ ( 𝑧  =  𝑍  →  ( 𝑌  ⚬  𝑧 )  =  ( 𝑌  ⚬  𝑍 ) ) | 
						
							| 24 | 23 | oveq2d | ⊢ ( 𝑧  =  𝑍  →  ( 𝑋  ⚬  ( 𝑌  ⚬  𝑧 ) )  =  ( 𝑋  ⚬  ( 𝑌  ⚬  𝑍 ) ) ) | 
						
							| 25 | 22 24 | eqeq12d | ⊢ ( 𝑧  =  𝑍  →  ( ( ( 𝑋  ⚬  𝑌 )  ⚬  𝑧 )  =  ( 𝑋  ⚬  ( 𝑌  ⚬  𝑧 ) )  ↔  ( ( 𝑋  ⚬  𝑌 )  ⚬  𝑍 )  =  ( 𝑋  ⚬  ( 𝑌  ⚬  𝑍 ) ) ) ) | 
						
							| 26 | 25 | notbid | ⊢ ( 𝑧  =  𝑍  →  ( ¬  ( ( 𝑋  ⚬  𝑌 )  ⚬  𝑧 )  =  ( 𝑋  ⚬  ( 𝑌  ⚬  𝑧 ) )  ↔  ¬  ( ( 𝑋  ⚬  𝑌 )  ⚬  𝑍 )  =  ( 𝑋  ⚬  ( 𝑌  ⚬  𝑍 ) ) ) ) | 
						
							| 27 | 26 | adantl | ⊢ ( ( ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  ∧  ( ( 𝑋  ⚬  𝑌 )  ⚬  𝑍 )  ≠  ( 𝑋  ⚬  ( 𝑌  ⚬  𝑍 ) ) )  ∧  𝑧  =  𝑍 )  →  ( ¬  ( ( 𝑋  ⚬  𝑌 )  ⚬  𝑧 )  =  ( 𝑋  ⚬  ( 𝑌  ⚬  𝑧 ) )  ↔  ¬  ( ( 𝑋  ⚬  𝑌 )  ⚬  𝑍 )  =  ( 𝑋  ⚬  ( 𝑌  ⚬  𝑍 ) ) ) ) | 
						
							| 28 |  | neneq | ⊢ ( ( ( 𝑋  ⚬  𝑌 )  ⚬  𝑍 )  ≠  ( 𝑋  ⚬  ( 𝑌  ⚬  𝑍 ) )  →  ¬  ( ( 𝑋  ⚬  𝑌 )  ⚬  𝑍 )  =  ( 𝑋  ⚬  ( 𝑌  ⚬  𝑍 ) ) ) | 
						
							| 29 | 28 | adantl | ⊢ ( ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  ∧  ( ( 𝑋  ⚬  𝑌 )  ⚬  𝑍 )  ≠  ( 𝑋  ⚬  ( 𝑌  ⚬  𝑍 ) ) )  →  ¬  ( ( 𝑋  ⚬  𝑌 )  ⚬  𝑍 )  =  ( 𝑋  ⚬  ( 𝑌  ⚬  𝑍 ) ) ) | 
						
							| 30 | 21 27 29 | rspcedvd | ⊢ ( ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  ∧  ( ( 𝑋  ⚬  𝑌 )  ⚬  𝑍 )  ≠  ( 𝑋  ⚬  ( 𝑌  ⚬  𝑍 ) ) )  →  ∃ 𝑧  ∈  𝐵 ¬  ( ( 𝑋  ⚬  𝑌 )  ⚬  𝑧 )  =  ( 𝑋  ⚬  ( 𝑌  ⚬  𝑧 ) ) ) | 
						
							| 31 | 12 20 30 | rspcedvd | ⊢ ( ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  ∧  ( ( 𝑋  ⚬  𝑌 )  ⚬  𝑍 )  ≠  ( 𝑋  ⚬  ( 𝑌  ⚬  𝑍 ) ) )  →  ∃ 𝑦  ∈  𝐵 ∃ 𝑧  ∈  𝐵 ¬  ( ( 𝑋  ⚬  𝑦 )  ⚬  𝑧 )  =  ( 𝑋  ⚬  ( 𝑦  ⚬  𝑧 ) ) ) | 
						
							| 32 | 3 11 31 | rspcedvd | ⊢ ( ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  ∧  ( ( 𝑋  ⚬  𝑌 )  ⚬  𝑍 )  ≠  ( 𝑋  ⚬  ( 𝑌  ⚬  𝑍 ) ) )  →  ∃ 𝑥  ∈  𝐵 ∃ 𝑦  ∈  𝐵 ∃ 𝑧  ∈  𝐵 ¬  ( ( 𝑥  ⚬  𝑦 )  ⚬  𝑧 )  =  ( 𝑥  ⚬  ( 𝑦  ⚬  𝑧 ) ) ) | 
						
							| 33 |  | rexnal | ⊢ ( ∃ 𝑧  ∈  𝐵 ¬  ( ( 𝑥  ⚬  𝑦 )  ⚬  𝑧 )  =  ( 𝑥  ⚬  ( 𝑦  ⚬  𝑧 ) )  ↔  ¬  ∀ 𝑧  ∈  𝐵 ( ( 𝑥  ⚬  𝑦 )  ⚬  𝑧 )  =  ( 𝑥  ⚬  ( 𝑦  ⚬  𝑧 ) ) ) | 
						
							| 34 | 33 | 2rexbii | ⊢ ( ∃ 𝑥  ∈  𝐵 ∃ 𝑦  ∈  𝐵 ∃ 𝑧  ∈  𝐵 ¬  ( ( 𝑥  ⚬  𝑦 )  ⚬  𝑧 )  =  ( 𝑥  ⚬  ( 𝑦  ⚬  𝑧 ) )  ↔  ∃ 𝑥  ∈  𝐵 ∃ 𝑦  ∈  𝐵 ¬  ∀ 𝑧  ∈  𝐵 ( ( 𝑥  ⚬  𝑦 )  ⚬  𝑧 )  =  ( 𝑥  ⚬  ( 𝑦  ⚬  𝑧 ) ) ) | 
						
							| 35 |  | rexnal2 | ⊢ ( ∃ 𝑥  ∈  𝐵 ∃ 𝑦  ∈  𝐵 ¬  ∀ 𝑧  ∈  𝐵 ( ( 𝑥  ⚬  𝑦 )  ⚬  𝑧 )  =  ( 𝑥  ⚬  ( 𝑦  ⚬  𝑧 ) )  ↔  ¬  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ( ( 𝑥  ⚬  𝑦 )  ⚬  𝑧 )  =  ( 𝑥  ⚬  ( 𝑦  ⚬  𝑧 ) ) ) | 
						
							| 36 | 34 35 | bitr2i | ⊢ ( ¬  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ( ( 𝑥  ⚬  𝑦 )  ⚬  𝑧 )  =  ( 𝑥  ⚬  ( 𝑦  ⚬  𝑧 ) )  ↔  ∃ 𝑥  ∈  𝐵 ∃ 𝑦  ∈  𝐵 ∃ 𝑧  ∈  𝐵 ¬  ( ( 𝑥  ⚬  𝑦 )  ⚬  𝑧 )  =  ( 𝑥  ⚬  ( 𝑦  ⚬  𝑧 ) ) ) | 
						
							| 37 | 32 36 | sylibr | ⊢ ( ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  ∧  ( ( 𝑋  ⚬  𝑌 )  ⚬  𝑍 )  ≠  ( 𝑋  ⚬  ( 𝑌  ⚬  𝑍 ) ) )  →  ¬  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ( ( 𝑥  ⚬  𝑦 )  ⚬  𝑧 )  =  ( 𝑥  ⚬  ( 𝑦  ⚬  𝑧 ) ) ) | 
						
							| 38 | 37 | intnand | ⊢ ( ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  ∧  ( ( 𝑋  ⚬  𝑌 )  ⚬  𝑍 )  ≠  ( 𝑋  ⚬  ( 𝑌  ⚬  𝑍 ) ) )  →  ¬  ( 𝑀  ∈  Mgm  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ( ( 𝑥  ⚬  𝑦 )  ⚬  𝑧 )  =  ( 𝑥  ⚬  ( 𝑦  ⚬  𝑧 ) ) ) ) | 
						
							| 39 | 1 2 | issgrp | ⊢ ( 𝑀  ∈  Smgrp  ↔  ( 𝑀  ∈  Mgm  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ( ( 𝑥  ⚬  𝑦 )  ⚬  𝑧 )  =  ( 𝑥  ⚬  ( 𝑦  ⚬  𝑧 ) ) ) ) | 
						
							| 40 | 38 39 | sylnibr | ⊢ ( ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  ∧  ( ( 𝑋  ⚬  𝑌 )  ⚬  𝑍 )  ≠  ( 𝑋  ⚬  ( 𝑌  ⚬  𝑍 ) ) )  →  ¬  𝑀  ∈  Smgrp ) | 
						
							| 41 |  | df-nel | ⊢ ( 𝑀  ∉  Smgrp  ↔  ¬  𝑀  ∈  Smgrp ) | 
						
							| 42 | 40 41 | sylibr | ⊢ ( ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  ∧  ( ( 𝑋  ⚬  𝑌 )  ⚬  𝑍 )  ≠  ( 𝑋  ⚬  ( 𝑌  ⚬  𝑍 ) ) )  →  𝑀  ∉  Smgrp ) | 
						
							| 43 | 42 | ex | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  →  ( ( ( 𝑋  ⚬  𝑌 )  ⚬  𝑍 )  ≠  ( 𝑋  ⚬  ( 𝑌  ⚬  𝑍 ) )  →  𝑀  ∉  Smgrp ) ) |