Metamath Proof Explorer


Theorem isnsqf

Description: Two ways to say that a number is not squarefree. (Contributed by Mario Carneiro, 3-Oct-2014)

Ref Expression
Assertion isnsqf ( 𝐴 ∈ ℕ → ( ( μ ‘ 𝐴 ) = 0 ↔ ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 neg1cn - 1 ∈ ℂ
2 neg1ne0 - 1 ≠ 0
3 prmdvdsfi ( 𝐴 ∈ ℕ → { 𝑝 ∈ ℙ ∣ 𝑝𝐴 } ∈ Fin )
4 hashcl ( { 𝑝 ∈ ℙ ∣ 𝑝𝐴 } ∈ Fin → ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝐴 } ) ∈ ℕ0 )
5 3 4 syl ( 𝐴 ∈ ℕ → ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝐴 } ) ∈ ℕ0 )
6 5 nn0zd ( 𝐴 ∈ ℕ → ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝐴 } ) ∈ ℤ )
7 expne0i ( ( - 1 ∈ ℂ ∧ - 1 ≠ 0 ∧ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝐴 } ) ∈ ℤ ) → ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝐴 } ) ) ≠ 0 )
8 1 2 6 7 mp3an12i ( 𝐴 ∈ ℕ → ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝐴 } ) ) ≠ 0 )
9 iffalse ( ¬ ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 → if ( ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 , 0 , ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝐴 } ) ) ) = ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝐴 } ) ) )
10 9 neeq1d ( ¬ ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 → ( if ( ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 , 0 , ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝐴 } ) ) ) ≠ 0 ↔ ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝐴 } ) ) ≠ 0 ) )
11 8 10 syl5ibrcom ( 𝐴 ∈ ℕ → ( ¬ ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 → if ( ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 , 0 , ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝐴 } ) ) ) ≠ 0 ) )
12 muval ( 𝐴 ∈ ℕ → ( μ ‘ 𝐴 ) = if ( ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 , 0 , ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝐴 } ) ) ) )
13 12 neeq1d ( 𝐴 ∈ ℕ → ( ( μ ‘ 𝐴 ) ≠ 0 ↔ if ( ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 , 0 , ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝐴 } ) ) ) ≠ 0 ) )
14 11 13 sylibrd ( 𝐴 ∈ ℕ → ( ¬ ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 → ( μ ‘ 𝐴 ) ≠ 0 ) )
15 14 necon4bd ( 𝐴 ∈ ℕ → ( ( μ ‘ 𝐴 ) = 0 → ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 ) )
16 iftrue ( ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 → if ( ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 , 0 , ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝐴 } ) ) ) = 0 )
17 12 eqeq1d ( 𝐴 ∈ ℕ → ( ( μ ‘ 𝐴 ) = 0 ↔ if ( ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 , 0 , ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝐴 } ) ) ) = 0 ) )
18 16 17 syl5ibr ( 𝐴 ∈ ℕ → ( ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 → ( μ ‘ 𝐴 ) = 0 ) )
19 15 18 impbid ( 𝐴 ∈ ℕ → ( ( μ ‘ 𝐴 ) = 0 ↔ ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 ) )