Metamath Proof Explorer


Theorem isnum2

Description: A way to express well-orderability without bound or distinct variables. (Contributed by Stefan O'Rear, 28-Feb-2015) (Revised by Mario Carneiro, 27-Apr-2015)

Ref Expression
Assertion isnum2 ( 𝐴 ∈ dom card ↔ ∃ 𝑥 ∈ On 𝑥𝐴 )

Proof

Step Hyp Ref Expression
1 cardf2 card : { 𝑦 ∣ ∃ 𝑥 ∈ On 𝑥𝑦 } ⟶ On
2 1 fdmi dom card = { 𝑦 ∣ ∃ 𝑥 ∈ On 𝑥𝑦 }
3 2 eleq2i ( 𝐴 ∈ dom card ↔ 𝐴 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ On 𝑥𝑦 } )
4 relen Rel ≈
5 4 brrelex2i ( 𝑥𝐴𝐴 ∈ V )
6 5 rexlimivw ( ∃ 𝑥 ∈ On 𝑥𝐴𝐴 ∈ V )
7 breq2 ( 𝑦 = 𝐴 → ( 𝑥𝑦𝑥𝐴 ) )
8 7 rexbidv ( 𝑦 = 𝐴 → ( ∃ 𝑥 ∈ On 𝑥𝑦 ↔ ∃ 𝑥 ∈ On 𝑥𝐴 ) )
9 6 8 elab3 ( 𝐴 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ On 𝑥𝑦 } ↔ ∃ 𝑥 ∈ On 𝑥𝐴 )
10 3 9 bitri ( 𝐴 ∈ dom card ↔ ∃ 𝑥 ∈ On 𝑥𝐴 )