Description: A way to express well-orderability without bound or distinct variables. (Contributed by Stefan O'Rear, 28-Feb-2015) (Revised by Mario Carneiro, 27-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isnum2 | ⊢ ( 𝐴 ∈ dom card ↔ ∃ 𝑥 ∈ On 𝑥 ≈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cardf2 | ⊢ card : { 𝑦 ∣ ∃ 𝑥 ∈ On 𝑥 ≈ 𝑦 } ⟶ On | |
| 2 | 1 | fdmi | ⊢ dom card = { 𝑦 ∣ ∃ 𝑥 ∈ On 𝑥 ≈ 𝑦 } |
| 3 | 2 | eleq2i | ⊢ ( 𝐴 ∈ dom card ↔ 𝐴 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ On 𝑥 ≈ 𝑦 } ) |
| 4 | relen | ⊢ Rel ≈ | |
| 5 | 4 | brrelex2i | ⊢ ( 𝑥 ≈ 𝐴 → 𝐴 ∈ V ) |
| 6 | 5 | rexlimivw | ⊢ ( ∃ 𝑥 ∈ On 𝑥 ≈ 𝐴 → 𝐴 ∈ V ) |
| 7 | breq2 | ⊢ ( 𝑦 = 𝐴 → ( 𝑥 ≈ 𝑦 ↔ 𝑥 ≈ 𝐴 ) ) | |
| 8 | 7 | rexbidv | ⊢ ( 𝑦 = 𝐴 → ( ∃ 𝑥 ∈ On 𝑥 ≈ 𝑦 ↔ ∃ 𝑥 ∈ On 𝑥 ≈ 𝐴 ) ) |
| 9 | 6 8 | elab3 | ⊢ ( 𝐴 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ On 𝑥 ≈ 𝑦 } ↔ ∃ 𝑥 ∈ On 𝑥 ≈ 𝐴 ) |
| 10 | 3 9 | bitri | ⊢ ( 𝐴 ∈ dom card ↔ ∃ 𝑥 ∈ On 𝑥 ≈ 𝐴 ) |